
Snap4All Mobile App

technical Manual (refer to Snap4City@disit.org)

2022 November

Contents

1 Introduction 2

2 Adaptation to the new Termux version 2

2.1 Merge between updated Termux and old Snap4All application . 2

2.2 Updating termux-api-package 3

2.3 Updating bootstrap packages . 4

2.4 node-red-contrib-termux-api fork 4

2.5 Code cleanup and documentation 5

3 New features 8

3.1 Restart not required . 8

3.2 Installation speed . 8

3.2.1 Full bootstrap build via Linode 9

3.3 User interface remake . 9

4 Example Node-RED Snap4City flows 10

4.1 First example flow – Battery . 12

4.2 Second example flow - Wifi . 13

4.3 Third example flow - Transport agencies 14

4.3.1 Join subflows . 15

1

1 Introduction

For each chapter that requires it, blocks of code will be proposed as an example
of the work described in the same. Each resource used will be included as a
footnote corresponding to its use. The previous application was developed in
2018 by Steven Salazar1, whose report we attach here2. This version has been
developed by Alberto Del Buono Paolini - Federico Marra with the support of
DISIT lab, Snap4City team and experts.

2 Adaptation to the new Termux version

To solve the first and most important problem, we had to completely update
the application starting from a fork of the latest version of Termux, available
on GitHub3. As a Termux fork we also inherited4 their GPLv3 license for the ap-
plication and the Apache 2.0 licenses for the terminal-view and terminal-

emulator subpackages.

2.1 Merge between updated Termux and old Snap4All ap-

plication

We have reported all the code snippets reported with the TERMUX MERGE com-
ment from the previous codebase to the new fork5 just created. Unfortunately
this was not enough since not all code changes of original Termux had been
reported with that comment. Moreover, some modified files were no longer
present in the same form since the code or Termux had been updated. Now
all changes to the original Termux repository are marked with TERMUX MERGE

and easily traceable by searching for MERGE across the codebase.

1https://github.com/StevenSalazarM
2https://github.com/albbus-stack/snap4all/blob/master/old-relation/

StevenSalazarOldRelation.pdf
3https://github.com/termux/termux-app
4https://github.com/termux/termux-app/blob/master/LICENSE.md
5https://github.com/albbus-stack/snap4all

2

https://github.com/StevenSalazarM
https://github.com/albbus-stack/snap4all/blob/master/old-relation/StevenSalazarOldRelation.pdf
https://github.com/albbus-stack/snap4all/blob/master/old-relation/StevenSalazarOldRelation.pdf
https://github.com/termux/termux-app
https://github.com/termux/termux-app/blob/master/LICENSE.md
https://github.com/albbus-stack/snap4all

TermuxActivity.java - Esempio di commento di merge

// START TERMUX MERGE

// Enables the console button on the MainActivity if there is already a

session.

MainActivity.activity.btnConsole.setEnabled(true);

// END TERMUX MERGE

2.2 Updating termux-api-package

Clearly, the subpackage of Termux responsible for interactions with the An-
droid system, i.e. termux-api-package, had also been updated very fre-
quently in the recent years. We have therefore made a fork6 of this package,
including also the changes necessary for the operation of the custom com-
mands termux-enable-buttons, termux-bluetooth-scaninfo and termux-

bluetooth-connect. The latter call the corresponding Java functions local-
ized in the termux-api module that implement their functionality.

termux-enable-buttons.sh

#!/data/data/com.termux/files/usr/bin/sh

set -e -u

SCRIPTNAME=termux-enable-buttons

show_usage () {

echo "Usage: \$SCRIPTNAME"

echo "Enables the node-red button."

exit 0

}

...

/data/data/com.termux/files/usr/libexec/termux-api EnableButtons

6https://github.com/albbus-stack/snap4all-termux-api-package

3

https://github.com/albbus-stack/snap4all-termux-api-package

2.3 Updating bootstrap packages

In the previous version of Snap4All, bootstrap packages, i.e. compressed
archives that contain the Termux filesystem, were downloaded from an ex-
ternal server when the application was built. This method is not only slow
but also precludes the modification of such archives, being served by a public
server.

We opted to host them on Github and then always use the same archives
locally at buildtime. This mode allows us to generate bootstrap archives with
any apt package we need, and then upload them to Github, thanks to the
generate-bootstrap.sh7script. This script is part of the termux-packages8

repository and together with run-docker.sh allows us to consistently generate
bootstrap archives for each architecture. In our case it was necessary to install
various packages:

• git: used to download the termux-api-package fork from Github.
• make, cmake, clang: used to install termux-api-package.
• node-js: used to install node-red.
• coreutils, openssh, nano: basic tools for a Unix system, including the
nano text editor for convenience in editing system files from the console.

Our use of the two termux-packages scripts follows:

shell

> ./run-docker.sh

> ./generate-bootstrap.sh -a git, make, cmake, clang, coreutils, nano,

nodejs, openssh

2.4 node-red-contrib-termux-api fork

Several errors occurred while testing the application, including one related to
node-red-contrib-termux-apipackage. This error occurred using the Cam-

era Photo node and was due to the incorrect call of the fs.unlink function,
7https://github.com/termux/termux-packages/blob/master/scripts/

generate-bootstraps.sh
8https://github.com/termux/termux-packages

4

https://github.com/termux/termux-packages/blob/master/scripts/generate-bootstraps.sh
https://github.com/termux/termux-packages/blob/master/scripts/generate-bootstraps.sh
https://github.com/termux/termux-packages

whose task is to delete the temporary photo that was taken by the Termux api.
We then made a fork9 of that package by changing the call to unlink, adding as
a second argument a callback that runs at the end of this function. Checking
the other nodes of this package, we did not find any other function that had a
deprecated signature.

index.js

fs.readFile(photoFile, (err, data) => {

if (err) throw err;

msg.payload = data;

node.send(msg);

// This is where the live npm package fails, the signature of the

unlink function used was incorrect, having no callback as the second

argument

fs.unlink(photoFile, (err) => {

if (err) throw err;

});

});

2.5 Code cleanup and documentation

Installation script (TermuxService part)
We modified the installation script to be readable in the future, it was split
into clearly distinct parts, making it more easily extensible. In addition, the
external resources needed to install the forks discussed above and insert the
sample Node-RED flows are all found from the respective Github repositories,
making updating them much easier and more modular.

TermuxService.java

String setupScript =

"#!/data/data/com.termux/files/usr/bin/sh\n" +

9https://github.com/albbus-stack/node-red-contrib-termux-api

5

https://github.com/albbus-stack/node-red-contrib-termux-api

// Acquire wakelock

"termux-wake-lock\n"+

// Npm executable setup for termux

"[-f "+isInstalled+"] || chmod +x "+PREFIX_PATH+"/bin/npm\n"+

// Installs a custom termux-api package

"[-d "+apiPackagePath+"] || pkg install clang -o

DPkg::Options::=\"--force-confold\" --no-upgrade -y\n"+.

"[-d "+apiPackagePath+"] || git clone

https://github.com/albbus-stack/snap4all-termux-api-package\n"+.

"[-f "+apiPackagePath+"/Makefile] || (cd snap4all-termux-api-package

&& cmake CMakeLists.txt)\n"+.

"[-f "+apiPackagePath+"/libtermux-api.so] || make\n"+

"[-f "+apiPackageInstallPath+"] || make install\n"+

// Installs node-red

...

// Installs node-red-contrib-termux-api

...

// Changing index.js of node-red-contrib-termux-api to an updated one

with the new node.js function signatures.

"[-f "+isInstalled+"] || cd $HOME\n"+

"[-f "+isInstalled+"] || curl

https://raw.githubusercontent.com/albbus-stack/node-red-contrib-

termux-api/master/index.js >

index.js\n"+

.

.

.

"[-f "+isInstalled+"] || mv index.js ../usr/lib/node_modules/node-

red/node_modules/node-red-contrib-termux-api/\n"+.

// Installs node-red-dashboard

...

// Installs node-red-contrib-snap4city-user

...

// Installs node-red-contrib-snap4city-developer

...

// Downloads and moves the node-red flows example to the node-red folder

"[-f "+isInstalled+"] || cd $HOME\n"+

6

"[-f "+isInstalled+"] || curl

https://raw.githubusercontent.com/albbus-

stack/snap4all/master/flows.json >

flows.json\n"+

.

.

.

"[-f "+isInstalled+"] || mv -f flows.json .node-red/\n"+

// Enables the buttons on the main page and starts the node-red server,

this part executes every time on boot since it has no modifiers.

"[-f "+isInstalled+"] || touch $HOME/installed\n"+

"termux-toast \"starting node-red\" && "+vibration+"\n"+

"termux-enable-buttons\n"+

// Runs node-red and, if it terminates with an error, will run this

script again.

"node "+nodeRedPath+" || $HOME/.termux/boot/start\n";

Code documentation and log removal
We have consistently documented all parts of the pre-existing code and code
we added, so we have updated deprecated part of code and removed all unnec-
essary debug logs, keeping exception-handling logs.

Esempi di documentazione

// A boolean to store the installation status

public static boolean installed=false;

// An Intent used to launch and reference the MainActivity

public static Intent MainOptions;

...

// Changes the console ActionBar title

Objects.requireNonNull(getSupportActionBar()).setTitle("Console");

// Starts the MainActivity on creation

MainOptions = new Intent(this, MainActivity.class);

startActivity(MainOptions);

...

7

// Set pending intent, pointing to the MainActivity, to be launched when

notification is clicked.

TermuxActivity.MainOptions.setFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP);

PendingIntent contentIntent = PendingIntent.getActivity(this, 0,

TermuxActivity.MainOptions, 0);.

...

// Enables the console button on the MainActivity if the setup was

successful.

MainActivity.activity.btnConsole.setEnabled(true);

3 New features

3.1 Restart not required

In the previous version of Snap4All, it was necessary to restart the device so
that Termux would run the installation script via the Termux:Boot module
after booting. This installation mode resulted in an unnecessary wait by the
user (as well as not being very reliable on some devices), since we can call the
installation script every time a session of a Termux console is initialized. We
have this possibility thanks to a basic functionality of every Unix system that
uses bash as a shell, namely to call our script from .bashrc. Every command
written in this file is then executed at bash startup.

TermuxService.java

String bashRcScript = "./.termux/boot/start";

3.2 Installation speed

The old bootstrap archives that were used in the Termux installation did not
contain any additional apt packages, thus making the subsequent installation
process much longer than necessary. By directly adding the packages we need
in the Termux filesystem we are only going to increase the weight of the final
application, drastically reducing waiting times during the setup of Snap4All.

8

3.2.1 Full bootstrap build via Linode

To build the complete application with updated bootstrap archives it is needed
a machine with at least 8 GB of RAM to be allocated exclusively to the Java
build process; this is due precisely to the large size of the .zip to be decom-
pressed. Having therefore a very common physical limitation, we had to set
up a server dedicated to building the full .apk, generalizing this process as
much as possible. By creating generate-and-build.sh10 we made our server
configuration replicable. This script is responsible for:

1. Generate bootstrap archives including the input specified packages.
2. Install Java and the Android SDK.
3. Clone or update the Snap4All repository.
4. Build the application, copying the .apk files generated in an immediately

reachable folder.

We used a server hosted by Linode for the connection speed, the wide avail-
ability of RAM and the ease of replication of that environment; clearly the
script can be used on any other Unix server/system. The machine we used was
a Linode 16 GB with Debian 11 installed.

3.3 User interface remake

Home page layout (MainActivity)
Using the components of MaterialUI available through the material-

components-android11 library, we updated the design of the home page. Now
the four buttons present are MaterialButtons that implement the "active"

and "disabled" states, not only in terms of the button color but also the opacity
of the relative icon. We have also added, along with the title of the application,
a subtitle that briefly describes the features of Snap4All. Figure (a) on page

11.

10https://github.com/albbus-stack/snap4all/blob/compile-branch/

generate-and-build.sh
11https://github.com/material-components/material-components-android

9

https://github.com/albbus-stack/snap4all/blob/compile-branch/generate-and-build.sh
https://github.com/albbus-stack/snap4all/blob/compile-branch/generate-and-build.sh
https://github.com/material-components/material-components-android

Information page and console layouts (InfoActivity and MainActiv-

ity)
We later modified the old application information page, consisting of a Web-

View showing the info.html12 file. So, we have rewritten the documentation
that explains how Snap4All works and directs the user to other sources to
deepen his use of the individual packages included in the application. To
make the design consistent with the home page we inserted CSS inside the file
quoted above. Figure (b) on page 11.

In the old version there was a problem with the Termux sidebar (where the
various active sessions of the console are listed): the icons were not shown and
the background was completely transparent, thus making the use impossible.
Figure (c) on page 11.

Vectorial assets and quick actions
To conclude the user interface part we have vectorially retraced Snap4City13

logo to be used as .svg, i.e. making it fully scalable to any resolution. We
have proposed two versions, one colored equal to the original and one more
minimal monochrome, to be used as a notification icon. These are included
directly in a folder14 of the Github repository. We have further changed the
quick action key icons for consistency. Figures (d) and (e) on page 11.

4 Example Node-RED Snap4City flows

We then created two sample flows that make use of the node-red-contrib-

snap4city-user15 and node-red-contrib-snap4city-developer16, which
are part of the Snap4City node suite. These are added automatically during
installation, always in the setup script, going to copy into the folder .node-red

12https://github.com/albbus-stack/snap4all/blob/master/app/src/main/assets/

info.html
13https://www.snap4city.org/
14https://github.com/albbus-stack/snap4all/tree/master/logos
15https://github.com/disit/node-red-contrib-snap4city-user
16https://github.com/disit/node-red-contrib-snap4city-developer

10

https://github.com/albbus-stack/snap4all/blob/master/app/src/main/assets/info.html
https://github.com/albbus-stack/snap4all/blob/master/app/src/main/assets/info.html
https://www.snap4city.org/
https://github.com/albbus-stack/snap4all/tree/master/logos
https://github.com/disit/node-red-contrib-snap4city-user
https://github.com/disit/node-red-contrib-snap4city-developer

(a) Home (b) Info (c) Console

(d) Vector logos (e) Quick actions

11

the flows.json17 file so that Node-RED loads these flows when initializing the
local server. To correctly use the first two example flows you need to configure
the credentials to Snap4City by following the tutorial on the information page.

4.1 First example flow – Battery

The flow extracts the battery percentage of the device via termux-battery-

status18 node. This string is then converted to a float in the function node.
Subsequently, the msg.payload is transformed into a string and passed to the
fiware orion out node that will send it to the Snap4City broker, containing
an IOT device with a certain name corresponding to the two fields key_1 e
key_2 compilati filled in during the node setup.

Nodo batteryPayload

msg.payload = {

"name": "battery",

"value": parseFloat(msg.payload.percentage),

"type": "float"

};

17https://github.com/albbus-stack/snap4all/blob/master/app/src/main/java/

com/termux/app/flows-example.json
18https://wiki.termux.com/wiki/Termux-battery-status

12

https://github.com/albbus-stack/snap4all/blob/master/app/src/main/java/com/termux/app/flows-example.json
https://github.com/albbus-stack/snap4all/blob/master/app/src/main/java/com/termux/app/flows-example.json
https://wiki.termux.com/wiki/Termux-battery-status

msg.payload = JSON.stringify(msg.payload);

return msg;

4.2 Second example flow - Wifi

When the flow starts the Wifi Info node node calls the API termux-wifi-

connectioninfo19 that retrieves the connection status, the SSID, and the
IP address. This information enters the three function nodes conncection-

StatePayload, ssidPayload and ipPayload, which manipulate the informa-
tion received and convert the resulting object into a string. As in the first
example flow, information will be sent through the fiware orion out node.

Nodo ipPayload

msg.payload = {

"name": "ip",

"value": msg.payload.ip,

19https://wiki.termux.com/wiki/Termux-wifi-connectioninfo

13

https://wiki.termux.com/wiki/Termux-wifi-connectioninfo

"type": "string"

};

msg.payload = JSON.stringify(msg.payload);

return msg;

4.3 Third example flow - Transport agencies

Once the flow starts, two subflows are performed in parallel:
1. numbers subflow
The Dialog node calls the termux-dialog20 API which displays a window ask-
ing the user to enter a phone number. To process this input, the payload is
passed by the json node which converts it from a string to an object. The mes-
sage enters the numbersPayload node function which extracts this input and
adds it as topic numbers.
2. tplagencies subflow
The tpl-agencies21 node provides a list of public transport agencies available
on Snap4City. The JSON containing this list enters the tplAgenciesPayload

function node which converts it to a string and adds tplagencies as topic.

20https://wiki.termux.com/wiki/Termux-dialog
21https://github.com/disit/node-red-contrib-snap4city-user/blob/master/

tpl-agencies.js

14

https://wiki.termux.com/wiki/Termux-dialog
https://github.com/disit/node-red-contrib-snap4city-user/blob/master/tpl-agencies.js
https://github.com/disit/node-red-contrib-snap4city-user/blob/master/tpl-agencies.js

Nodi numbersPayload e tplAgenciesPayload

msg.payload = msg.payload.text

msg.topic = "numbers"

return msg;

msg.payload = JSON.stringify(msg.payload)

msg.topic = "tplagencies"

return msg;

4.3.1 Join subflows

In the join node the two subflows are joined in a unique msg.payload, in-
dexed according to the names of the topic, which waits for the arrival of both
messages before continuing the execution of the flow (through the setting Send

the message after 2 message parts and every subsequent message).
The information enters the textPayload function node which:

1. Assigns msg.numbers to the msg.payload of the first subflow that contains
user input.

2. It cycles on all JSON objects contained in the msg.payload.tplagencies

(corresponding to the second subflow) and sets a string with all the names
of the transport agencies that will then be assigned to the final message.

In the end, the SMS Send node calls the termux-sms-send22 API which sends
an SMS to the number corresponding to msg.numbers containing the just set
string.

Nodo textPayload

msg.numbers = msg.payload.numbers

let s = "All Snap4City TPL Agencies:\n"

for (let x of (JSON.parse(msg.payload.tplagencies))) {

s += x.name + "\n";

}

22https://wiki.termux.com/wiki/Termux-sms-send

15

https://wiki.termux.com/wiki/Termux-sms-send

msg.payload = s

return msg;

16

	Introduction
	Adaptation to the new Termux version
	Merge between updated Termux and old Snap4All application
	Updating termux-api-package
	Updating bootstrap packages
	node-red-contrib-termux-api fork
	Code cleanup and documentation

	New features
	Restart not required
	Installation speed
	Full bootstrap build via Linode

	User interface remake

	Example Node-RED Snap4City flows
	First example flow – Battery
	Second example flow - Wifi
	Third example flow - Transport agencies
	Join subflows

