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Abstract. Forecasting future values of air quality related metrics and specific 

pollutant concentration could be of pivotal importance in recent Smart City per-

spectives. A number of pollutants are dangerous for people’s health and impact 

on environment and climate. In order to control and reduce the emissions, na-

tional and international organizations have defined guidelines and targeted limits 

to be respected currently, and to be progressively reduced along the year/months. 

On this regard, the European Union has set limits for the concentration of the 

yearly mean value of NO2 which must not exceed 40 µg/m3 . To this end, in this 

paper, we propose a model and tool to compute long terms predictions, up to 180 

days in advance, of the progressive mean value of NO2 with a precision needed 

to enable decision makers to perform corrections. The solution proposed is based 

on machine learning approach taking into account measures of pollutant, traffic 

flow, weather and environmental variables coming from sensors on the field. A 

comparison of different techniques has been provided. The research activity has 

been developed in the context to TRAFAIR CEF project of EC which aimed to 

study the effect of traffic and of other human activities on NO and NO2. The data 

and the solution have been developed by exploiting the Snap4City platform; the 

validation of the solution has been performed by using actual measured data from 

years 2014 to 2020 in the area of Florence, Italy. The results are accessible via a 

monitoring dashboard on Snap4City which reports real time values and predic-

tions in real time 

Keywords: First Keyword, Second Keyword, Third Keyword. 

1 Introduction 

In the context of smart cities, tools for air quality monitoring are one of the main pillars. 

In recent years, the concentrations of air pollutants have reached critical values in the 

majority of industrialized cities over the world, and a large number of actions have been 

targeted by governs and international institutions to reduce them. Thanks to the devel-

opment of Internet of Things (IoT) technologies, it has been possible to acquire useful 

data, for instance through air quality sensors, that can be used to develop real-time data 

analytics and predictive machine learning models. The search field of air quality pre-

dictions is experiencing an increasing interest due to its relevance. Despite this, the 

majority of related works are based on short-term predictions starting from hourly 
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values up to a few days from the prediction time. The majority of state-of-the-art tools 

to forecast future air pollutant concentrations are machine learning techniques that need 

consistent historical data representing the features that determine or influence the spe-

cific air pollutant, in order to be trained to predict future concentrations. In [15], it has 

been shown that this problem can be solved using multivariate data. Recently, Deep 

learning based methods have been proposed for air quality prediction, such as [9], [14]. 

The Long Short-Term Network (LSTM) model has been used in [16], in which several 

air quality pollutant factors have been predicted such as CO, NO2, O3, PM10 in short 

term. In [13], the importance of taking into account meteorological and temporal fea-

tures for the development of predictive models for air pollutants has been highlighted. 

Therefore, data analytic enabled a number of applications that range from the develop-

ment of territorial heatmaps [4] to alerting systems when the NO2 concentration reaches 

dangerous values. In this context, the TRAFAIR project (in which this research has 

been developed) has been focused on the short and mid-term prediction of NOX (NO 

+ NO2) on the basis of traffic flow and on other factors [17], [6].  

    Among the air pollutants, nitrogen dioxide (NO2) can cause serious problems not 

only for people’s health but also for the environment [19]. Exposure to NO2 has been 

linked to increased mortality of a relative risk factor of 1.04 every 10 µg/m3 in the 

annual NO2 concentration [8]. The European Union has created a legislative program 

[7] in which the limits of air pollutants concentrations, to preserve people’s health are 

specified. For the nitrogen dioxide, the maximum yearly mean concentration value is 

set to 40 µg/m3 . Other limits have been imposed on other pollutants, while the over-

come of the mean value over the year 1seems to be the most effective in pushing cities 

towards the control and thus it forces them to the improvement of air quality. In fact, 

the reduction of the mean NO2 leads to the corresponding reduction of other pollutants 

and of GHG (greenhouse gas) also provoked by traffic and heating in general 

(https://en.wikipedia.org/wiki/Greenhouse  gas).  

This paper aims to present a system to assess and produce long terms predictions of 

the yearly mean NO2 concentration. The yearly mean nitrogen dioxide concentration 

is typically assessed by the European Commission in the most critical points of the city, 

that are the major roads, and since it is a long term average, it is particularly complex 

to correct it by imposing last minute traffic restrictions. Being the metrics, a long term 

average over the year, it is hard to revert the trend by closing roads for a few days; even 

a drastic total closure per a number of days risks to create a marginal reduction on 

progressive mean. Our work differentiates from the above-mentioned papers in the field 

of air quality prediction because it does not focus on predicting the hourly or daily 

concentration of NO2. We focused on long term prediction of the yearly mean value of 

the NO2 concentration. In the presented work, in order to develop a monitoring, pre-

dictive tool and a dashboard to study the trend of the yearly mean value of NO2 con-

centration, we have developed six predictive LSTM deep neural networks to forecast 

the future progressive mean values of nitrogen dioxide for 30, 60, 90, 120, 150 and 180 

days ahead of the current day. The LSTM solution has been selected among a number 

of solutions compared in the paper. The work presented in this paper has been devel-

oped in the context of TRAFAIR CEF Project of EC, on the basis of the data collected 

https://en.wikipedia.org/wiki/Greenhouse
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in the city of Florence. Indeed since 2014, the city of Florence has not respected the 

limit imposed by the EU for the mean value concentration of NO2.  

 

The paper is organized as follows. In Section 2, the description of data and selection of 

features are reported and discussed. Section 3 describes the production of the predictive 

models for mean progressive NO2, and provides also the comparison with other ma-

chine learning techniques to demonstrate that the LSTM has been the better ranked. In 

Section 4, a description of the Real Time monitoring and prediction service set up on 

Snap4City are provided. Conclusions are drawn in Section 5. 

 

2 Data Description and feature identification 

Nitrogen dioxide, NO2, is generated for the most part in the atmosphere for the oxida-

tion of nitrogen monoxide (NO), which is produced by combustion processes, in par-

ticular by traffic of vehicles, heating houses, and industrial activities [1] [20]. However, 

other factors may influence NO2 values. According to the introduction, this paper 

aimed to present a long term solution for predicting the yearly mean values of NO2 

concentration, in advance a much as possible with respect to the date in which the tax-

ation to city may be produced. According to the European rules, the metrics is typically 

assessed at the end of the year, while the cities need to keep those metrics under control 

much in advance to take countermeasures on time. The progressive mean value in the 

specific year of study is calculated as the NO2 mean concentration day after day, and 

dividing this by the number of passed days. The data for the problem as formulated, are 

structured as a time series. The city of Florence since 2014 have not respected the limit 

imposed by the EU for the mean value of NO2, that has to be lower than 40 µg/m3 . 

The reference values have been estimated on the basis of the data acquired from sensor 

FI-GRAMSCI of regional agency of environment (Agenzia regionale per la protezione 

ambientale della Toscana, ARPAT) [1], recorded for year 2014 as yearly mean of 

63.396 µg/m3 , for 2015: 65.173 µg/m3 , 2016 36.794 µg/m3 , for 2017: 63.396 µg/m3 

, for 2018: 60.256 µg/m3 , for 2019: 56.111 µg/m3 , and for 2020 a value of 42.632 

µg/m3 (despite of the COVID-19). The data are accessible on the Snap4City infrastruc-

ture of DISIT lab Https://www.snap4city.org [5], [3]. 

In order to build a long term predictive model, a number of features have been tested 

and relevant feature identified as described in the following. They refer to historical 

values of NO2, traffic flow, weather conditions, heating conditions, etc. Therefore, a 

set of derived features have been computed according to the physical meaning of what 

we would like to predict, which is the progressive mean value of the measured variable 

in µg/m3 .  

 

The most relevant predictor for the model is related to the traffic flow data. Accord-

ing to our analysis performed on ServiceMap (Snap4City) by DISIT lab, the position 

of the above mentioned ARPAT-Gramsci sensor for NO2 has been analyzed. This sen-

sor is positioned on ”Viale Antonio Gramsci” in the city of Florence, and it detects the 
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hourly mean value of NO2 expressed in µg/m3 . The historical data cover the years 

starting from 2014. The time granularity is hourly. Using the same tool, the 

FI055ZTL00201 traffic sensor [18] has been considered. This sensor detects the num-

ber of vehicles that transit per hour in the same ”Viale Antonio Gramsci” of Florence, 

in which the above mentioned ARPAT-Gramsci sensor is also positioned. The predic-

tion can only be performed on a single pollutant sensor since, that sensor is the sensor 

used by the EC to emit the taxation, and thus to take into account also other NO2 sensors 

in other parts of the city has been demonstrated to be non relevant. As demonstrated in 

TRAFAIR, the pollutant are volatile and are moved by wind and thus a limit life 2on 

air. Figure 1 shows the position of the selected sensors.  

 

Fig. 1. Positions of FI055ZTL00201 traffic sensor and ARPATGRAMSCI air quality sensor 

shown on ServiceMap tool of https://www.snap4city.org  portal and service. 

The historical data of traffic covers the years starting from 2014 with a granularity of 5 

min. It should be noted that, the traffic flow sensors provide data in terms of traffic 

density and/or in terms of number of vehicles passed in the unit of time (vechicleFlow), 

which in our case was an hour. On the other hand, we need to have values which take 

into account the total amount of pollutant produced over the whole day because the 

NO2 taken into account is a cumulative data. Therefore, we estimated the following 

features:  

 numberOfVehclesi= ∑ vehicleFlowil

24
l=1   (1) 

 numberOfVehclesCumulatedi= ∑ numberOfVehclesi
i
k=1   (2) 

Another relevant aspect, which influences the traffic and thus the pollutant, is repre-

sented by the environmental conditions. To this end, meteorological data have been 

acquired through Snap4City and IlMeteo.it [12] for the city of Florence. The data pro-

vided by these resources comprehend various parameters: minimum, mean, and maxi-

mum temperature of the day expressed in °C; Dew point also expressed in °C; mean 

and maximum wind speed expressed in km/h; humidity of the day expressed in per-

centage; the air pressure of the day expressed in millibar (mb). These data covers the 

https://www.snap4city.org/
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historical period of interest starting from 2014 with daily values. The environmental 

conditions influence the NO2 production with the usage of the house heating, and prop-

agation with wind. The former factor has been taken into account exploiting a formula 

derived from TRAFAIR project [17]. Then, using the mean daily temperature, it is pos-

sible to determine, through a parametric formula, the domestic NOx produced in a day. 

 NOxDomestici= (K + A*Tmediai+B*Tmediai
2)*1000 (3) 

where: K = 2.22488, A = −0.14828, B = 0.00276 computed and validated in TRAFAIR. 

Please note that they impact on pollutant only during the winter period and for about 

1/10 of the NO2 produced. So that, it is a corrective factor. The second aspects directly 

considering the wind as possible features. In order to forecast the progressive mean 

values of NO2 it has been necessary to apply some pre-processing operations. Firstly, 

the conversion to the chosen time granularity, that is daily. The last operation consisted 

of deriving the cumulated progressive mean features starting from the NO2, traffic val-

ues, and also for the domestic NOx and deriving some temporal features from the 

DateTime of the prediction day (Date, Year, Month, dayOfT heMonth, dayOfT heY 

ear, dayOfT heW eek, weekEnd, festivity, workingDay, ferialDay). Considering the 

year j and the i − th day of this year as the day of the prediction, in the next lines the 

detailed formulas used to obtain the derived features are reported. 

 NO2Cumulatedi= ∑ NO2k

i
k=1   (4) 

 NO2progressiveMeani=
NO2Cumulatedi

i
 (5) 

 NOXDomesticCumulatedi= ∑ NOXDomestick
i
k=1   (6) 

 NOXDomesticCumulatedi=
NOXDomestick

i
 (7)  

The initial dataset taken into account is reported in table 1 with the details of the fea-

tures. 

Table 1. Initial Data-set taken into account with details 

Metric Details 
Date UTC format of the day of prediction YYYY-MM-DD 
Year of the observation {2014,...,2020} 
Month of the observation {1,...12} 
dayOfTheYear day number in the year {1,...365/366} 

dayOfTheMonth day number in the month {1,...31} 
dayOfTheWeek day of the week {1,...,7} 
weekend saturday or sunday 1, 0 otherwis 
festivity festivity 1, 0 otherwise.  
workingDay not a saturday or sunday and it is not a festivity 
ferialDay 1 if the day is not a sunday or a festivity 
NO2 the NO2 hourly mean of the observation day in µg/m3 
Tmin The min temperature of the day in °C 

Tmean The mean temperature of the day in °C 
Tmax The max temperature of the day in °C 
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dewpoint the dew point temperature in °C 
windMean the mean value of the wind of the day in km/h 
windMax the max value of the wind of the day in km/h 

Humidity the humidity of the day in % 
pressioneSLM the air pressure in millibar (mb) 
NOx the NOx value of the day in kg 
numberOfVehicles the number of vehicles of the day 
NO2cumulated the cumulated value of NO2 up to the day 
NO2progressiveMean the progressive mean value of NO2 up to the day 
numberOfVehiclesCumulated the number of vehicles cumulated up to the day 
NOxDomesticCumulated the cumulated value of NOx up to the day 

NOxDomesticProgressiveMean the progressive mean value of NOx up to the day 

 

The aim was to create a set of long term predictive models to be used in a real-time 

process that every day of the current year may generate the prediction on the basis of 

collected data, and thus of the calculated features. The computed predictions shall be 

also be displayed in a monitoring dashboard on Snap4City, which can be used for the 

city control monitoring and forecast. 

 

2.1 Feature Analysis 

As above mentioned, the research aimed to identify a prediction model for the progres-

sive mean values of nitrogen dioxide, NO2. After having performed several testing, a 

machine learning technique has been chosen discharging the more classical 

ARIMA/SARIMA, ARIMAX approaches which are unsuitable for long term predic-

tions. The process of feature analysis has been an important operation to reduce the 

dimension of the input space in terms of features, with the aim of selecting the most 

relevant features which can lead to generalize the model, reducing the eventual overfit-

ting, and simplifying the computational architecture in real time. Moreover, this allows 

a significant reduction of the computational time which is performed every day. A first 

analysis was performed using Scatterplots and correlation matrices which did not 

shown useful information on the linear correlation of the target feature (the progressive 

mean value of the NO2), and thus have not been reported in this paper. In order to select 

the most relevant features, Principal Component Analysis (PCA) has been applied. The 

PCA is used for multivariate problems, feature engineering and for machine learning 

[2]. The results of the PCA have been reported in Figure 2. The trade-off for the ex-

plained variance has let us to selected the first 5 Principal Components, the figure re-

ported the first 7. 

The first component, which is largely the most relevant as shown in table 2, includes 

the progressive mean features of NO2 and NOxDomestic with also the min tempera-

ture, the dew point, and the cumulated number of vehicles. In the second component, 

the features cumulated are the most relevant, with the mean and max temperature and 

the humidity. The third component includes the wind features; the fourth the air pres-

sure; and in the fifth the daily NO2 with the number of vehicles. 

According to the above reported analysis, we performed a number of tests with the 

aim of identifying a compromise between complexity (in terms of number of features) 

and precision. The identified compromise for the predictive features of the models has 
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been to use: NO2, Tmean, humidity, windMean, NOxDomestic, numberOfV ehicles, 

NO2cumulated, NO2progressiveMean, numberOfV ehiclesCumulated, with associated 

Month and dayOfT heY ear for their identification in the time series. 

 

 

Fig. 2. Principal Components with their corresponding explained variance. 

 

Table 2 Principal Components analysis (a part) 

Parametro comp1  comp2  comp3  comp4  comp5  

NO2 0.21492  0.03753  0.21523  0.12079  0.49583  
NO2cumulated   -0.29702  0.33402   -0.09504  -0.03905   0.03549   

NO2progressiveMean   0.31897   -0.25867  0.10213  0.05706   -0.04563   
Tmin  -0.30745   -0.27795  0.06725  0.10825 0.08754   
Tmean  -0.29595  -0.31203  0.16324   0.00393 0.13399   
Tmax  -0.2687   -0.31676  0.24441   -0.06649  0.1375   
dewPoint  -0.31326   -0.15871  0.17945  0.23102   0.04431   
windMean.km.h   -0.00725   -0.28206  -0.6145   -0.14964  0.07701   
windMax.km.h   -0.03454   -0.30142   -0.59137   -0.03938  0.09913   
humidity  0.01218  0.43378   0.04680  -0.42877   -0.07932   

pressioneSLM.mb  0.04822   -0.01663  0.18496   -0.91479  0.22794   
numberOfVehicles   0.14502   0.16311  -0.12736   0.21015  0.78224   
numberOfVehiclesCumulated   -0.29235  0.34455   -0.0991   -0.03161   0.03886   
NOxDomestic  0.30408  0.27471  -0.06801   0.00842   -0.13415   
NOxDomesticCumulated  -0.30356  0.30434   -0.11701   -0.04954   0.05715   
NOxDomesticProgressiveMean  0.34165  -0.1894   0.07221   0.05133   -0.04398  
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3 Predictive Models 

In order to create a reliable solution to compute predictions of the progressive mean 

value of NO2 ahead, a number of models have been created. The questions to be solved 

have been: (1) it is possible to create a reliable predictive model for the progressive 

mean value of NO2?, (2) how much in advance the model can provide acceptable pre-

dictions? Please note that, the literature provides only short terms predictions of NO2 

which are not useful to perform corrections in time, since the progressive mean is hard 

to be corrected as above explained. Therefore, we targeted the study to perform a set of 

predictive models aiming at computing reliable long terms prediction, for example 30, 

60, 90, 120, 150, and 180 days in advance with respect to the current day. For this 

reason we have developed 6 specific LSTM models instead of one multi-output, which 

does not produced good enough results. The dataset available covered the years 2014, 

2015, 2016, 2017, 2018, 2019, and 2020. However, the year 2020 reported a signifi-

cantly different trend for the progressive mean values of the nitrogen dioxide (due to 

the restrictions for the Covid-19 pandemic), as it is shown in figure 3. For this reason, 

the data used for training have been those of the years 2014-2017. In addition, once the 

model has been obtained, it has been validated against the values of year 2018, and 

tested for precision assessment against data of 4year 2019, as reported in the following. 

We have also reported the results for year 2020 for completeness, but due to the 

COVID-19 they cannot be taken into account as a good example and validation of the 

model, as it can be observed in figure 3. 

 

Fig. 3. Progressive mean trends for NO2 in the years 2014, 2015, 2016, 2017, 2018, 2019, 

2020, 2021 according to the ARPAT sensor adopted by the EC as a reference. Please note that 

NO2 scale starts from 38 µg/m3 on Y axis. 

The LSTM model has been adopted [11] with its update [10]. Before selecting the 

LSTM we have tested a number of techniques as reported in Section 3.2. The 
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architecture of the predictive models has been set to 3 layers with optimized hyperpa-

rameters for every temporal target through a Randomized Search CV:  

• The first layer is made by 64 or 32 LSTM units  

• The intermediate layer is a Dense layer with 64, 32 or 16 units with also a 

dropout rate of 0.1, 0.2, 0.5.  

• The final layer has only one neuron to predict the selected time target. 

For each model, the Adam Optimizer has been chosen among learning rates 0.05, 0.005, 

0.0005, or 0.00005. The considered loss has been assessed by using the Mean Squared 

Error (MSE). The batch size changed between 64 and 32; meanwhile the number of 

epochs has been set to a maximum value of 1000, while the training strategy used the 

Early Stopping method for determining the optimum epoch number which minimize 

the Medium Average Error (MAE) of the validation set, allowing also the restoring of 

the weights of the best model.  

The input data for to the model have been organized through a multiple sliding win-

dow that contains the data of 20 days preceding the i − th day of prediction in the con-

sidered year, and 20 days before the target day of the previous year. The structure of 

the multiple sliding windows approach is shown in Figure 4. 

 

Fig. 4. Structure of the sliding window in the day (time instants): i, i + 1, i + 2. 

The input features to the models are: Month, dayOfTheYear, NO2, Tmean, humidity 

windMean,NOxDomestic, numberOfVehicles, NO2Cumulated, 

NO2progressiveMean, numberOfVehiclesCumulated. 
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Let’s deepen into the structure of the model that predicts the progressive mean value of 

NO2 30 days ahead. The hyperparameters for the 6 predictive models developed are 

reported in Table 3, which reports the 3 top model configurations resulted from the 

Randomized Cross Validation and in bold are highlighted the best ones. 

Table 3. Hyperparameters for the models developed 

negMSE model LSTMunits  intermediateUnits  dropoutRate  learningRate  batchSize 

-0.0017 30 64 64  0.1  0.00005 32 
 -0.0062 30 32 16 0.1  0.0005 64 
 -0.0077 30 64 16 0.5  0.05  32 
-0.0031  60  32  64  0.1  0.0005 64 
 -0.0047 60 64 64  0.5 0.005  32 
 -0.0069 60 64 16  0.25 0.005  32 

 -0.0038 90 64 64  0.1  0.0005  32 
 -0.0049 90 64 64  0.1  0.0005  64 
 -0.0053 90 64 16  0.25 0.00005  32 
 -0.0059  120 0 64 64 0.25 0.005 64 
 -0.0092  120 32  16  0.1  0.005  64 
 -0.0116  120 32  32  0.5  0.0005 32 
 -0.0061  150 64 64 0.5 0.05  64 
 -0.0066  150 32  32  0.1  0.05  32 

 -0.0071  150 32  16  0.1  0.005  64 
 -0.0069  180 32 64 0.1 0.0005 64 
 -0.0124  180 64  64  0.25 0.005  64 
 -0.0158  180 32  64  0.5  0.05 64 

 

The negative Mean Squared Error is used when minimizing the test score metrics of the 

combinations. The architectural structure of the LSTM neural network is visible in Fig-

ure 5. 

 

Fig. 5. Example of LSTM structure for the prediction model. 
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3.1 Experimental Results and Validation 

The quantitative metrics used to evaluate the predictive models have been the Mean 

Absolute Error (MAE), the Root Mean Squared Error (RMSE), the Mean Absolute Per-

centage Error (MAPE), and the R-Squared (R2) which is the coefficient of determina-

tion. The results obtained by using the test set of year 2019 are reported in Table 4, and 

the outputs are visible in Figure 6.  

Table 4. Hyperparameters for the models developed 

metric model30  model60  model90  model120 model150 model180  

MAE  1.21  1.31 1.52  2.04 2.31  2.37  
RMSE  2.16  2.61  4.18  6.77  7.83  7.93  
MAPE  1.99  2.20  2.65  3.57  4.07  4.18  
R2 0.91  0.83  0.80  0.54  0.45 0.14  

 

Fig. 6. Trend of the 6 predictive models with respect to the actual progressive mean NO2 val-

ues of year 2019. Please note that NO2 scale starts from 55 µg/m3 on Y axis. 

According to the results, larger errors in predictions are obtained by the models which 

try to provide longer terms predictions. They start from a MAE of 1.21µg/m3 for the 

prediction of 30 days ahead up to 2.37µg/m3 for the model of 180 days ahead. In per-

centage, these results correspond to the 1.99% for the 30 days predictions and to the 

4.18% for 180 days predictions. Please note that the precision in prediction is accepta-

ble even in the worst case, since the error is very low with respect of the 40 µg/m3 of 

the reference value of the EC. We can state that obtaining a prediction 180 days in 

advance allows decision makers to put in place the needed measures to correct the NO2 

trend of the city. 
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    The results of the models for the year 2020 are visible in Figure 7. Year 2020 has 

been a particular one due to the COVID-19 pandemic and the lockdowns that changed 

the volume of traffic vehicles, the amount of heating, and thus also the NO2 concentra-

tion has been substantially changed, as it can be observed by its temporal trend with 

respect to the typical trends of the previous years. For this reason, the model puts in 

production to generate the dashboard data for the year 2021 uses sliding windows with 

learning model based on 2019 and past data, instead of on those of the previous year. 

 

Fig. 7. Trends of the 6 predictive models with respect to the actual progressive mean NO2 val-

ues of year 2020. 

3.2 Model Comparison 

The sliding window approach proposed for past data has been tested with also other 

machine learning techniques.  

    The first comparison has been with a deep neural network, DNN, with the same num-

ber of layers as the LSTM architecture described in the previous section. Also, the hy-

perparameters tuning has been the same as the one described in section 3.1 with the 

same values but of course, the units of the layers are not LSTM units but the ones used 

for the DNN.  

    Our approach has been tested with also ensemble learning techniques. In particular, 

the techniques chosen have been Random Forest (RF) and Extreme Gradient Boosting 

machines (XGBoost).  

    Regarding the implementation of the ensemble learning 6techniques the number of 

trees parameter for the RF has been set to 300, with min sample split set to 2, min 

number of samples allowed for a leaf equal to 1, without limits on the maximum number 

of features considered to split a node and the number of leafs and with the construction 

of bootstrapped datasets for creating the trees. The XGBoost regressor uses the least-
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squares loss function with learning rate optimized with values 0.1, 0.01, and 0.001 with 

max depth equal to 3 and min sample spilt, min sample leaf, max number of features 

equal to the ones chosen for the RF.  

    The results of these techniques vs LSTM have been compared in term of MAPE, 

Mean Absolute Percentage Error results for the prediction targets of 30, 60, 90, 120, 

150, and 180 days. The results are reported in Table 5. 

 

Table 4. Hyperparameters for the models developed 

target day LSTM  DNN  XGBoost RF  

30 2.16 4.87  5,26 5,26  

60  2.61 6.67 6,52 6,56  
90  4.18  7.00 7,64 7,76 
120  6.77 6.86  8,81 8,93 
150  7.83  8.99 9,35  9,40 
180  7.93  9.25  9,90  10 

 

The results proved that the proposed LSTM approach outperforms the other techniques 

presented in terms of MAPE for every prediction target. For the 30 days prediction, the 

LSTM performs an error of about 2% compared to the 5% of the other techniques and 

performs better for the other targets up to the 180 days target with a MAPE of 7.93% 

where the others recorded MAPEs greater than 9%. 

 

4 Dashboard for Real Time Monitoring and Prediction 

As presented in previous section, substantially, we provided positive answers to the 

above reported two questions, regarding feasibility of the predictive model and the ca-

pability of providing predictions in advance enough to be exploitable by decision mak-

ers. On the other hand, a daily tool to visualize the results generated by the predictive 

models for the progressive mean NO2 has been developed as a monitoring dashboard. 

It has been realized by exploiting the facilities of the DISIT Lab with its Snap4City 

Dashboard Builder of Snap4City Https://www.snap4city.org [5]. The dashboards can 

easily exploit data collected in real time by the platform, as well as real-time rendering 

of results generated by Node-RED processes, which are called IOT Apps. The IOT App 

process, Node-Red/node.JS, exploiting Snap4City MicroServices, is executed daily and 

uses a Python script to generate the inputs for the predictive models and make the pre-

dictions for every temporal target. The dashboard developed is reported in Figure 8 and 

it is made of three areas: 

• The first contains the trends of the predictions made from the current day of the 

years for the temporal targets of 30, 60, 90, 120, 150 and 180 days ahead. These are 

reported through a bar series plot with a color scheme that darkens as the time target 

increases.  

• The second contains a temporal multi series plot that shows the whole set of previ-

sion models with respect to the trend of the actual values. In the plot, the horizontal 

green line is the EU limit value of 40 µg/m3. 
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• The third on the right shows a heatmap of the NO2 in Florence with the possibility 

to show the position of air quality and traffic sensors. It is also possible to monitor 

the trends of the traffic, NO2, and of many other pollutants of the last weeks and 

months and years from the current day.  

 

Fig. 8. Monitoring dashboard reporting real time value, prediction and actual cumulative values 

of NO2 of the sensors considered for the official metrics. 

The dashboard is accessible through any browser using the following link: 

https://www.snap4city.org/dashboardSmartCity/view/index.php?idasboard=MzA2OQ  

 

5 Conclusions And Future Developments 

A number of pollutants are very critical for people’s health, environment and climate. 

In order to reduce the emissions, national and international organizations have defined 

guidelines and targeted limits to be respected. On this regard, the European Union has 

set limits to the concentration for the yearly mean value of NO2 which must not exceed 

40 µg/m3 . In this paper, we described a model and tool to compute long terms predic-

tions for 30, 60, 90, 120, 150, and 180 days ahead from the current day of estimation. 

The access to reliable long term predictions may allow decision 7makers to perform 

corrections. These models has produced results on a test set composed with the data of 

2019, starting from a MAE of 1.21µg/m3 for the 30 days ahead prediction up to a 

2.37µg/m3 for the 180 days prediction, that in percentage corresponds to 1.99% and 

4.18%. The solution proposed is based on LSTM approach of deep learning taking into 

account measures of pollutant, traffic and environmental variables coming from sensors 

on the field. The LSTM solution has been demonstrated to be better ranked with respect 

to DNN, RF and XGBoost. The research activity has been developed in the context to 

TRAFAIR CEF project in which aimed to study the effect of traffic and other human 

activities on the NO and NO2. The data and the solution have been developed exploiting 

https://www.snap4city.org/dashboardSmartCity/view/index.php?idasboard=MzA2OQ
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the Snap4City platform, and the validation of the solution has been performed by using 

actual data from 2014 to 2020 in the area of Florence, Italy, from a large number of 

features and not only historical data. The results are accessible via a monitoring dash-

board on Snap4City which report real time values and the predictions in real time. The 

approach presented in this paper can be further applied to the other air pollutants like 

PM2.5, PM10, CO, for which the EU has set yearly limits on their concentrations, and 

of course, this can be applied to other Smart Cities scenarios whenever the available 

data cover a sufficient historical range. 

 

For citations of references, we prefer the use of square brackets and consecutive num-

bers. Citations using labels or the author/year convention are also acceptable.  

 

The following bibliography provides a sample reference list with entries for journal 

articles [1], an LNCS chapter [2], a book [3], proceedings without editors [4], as well 

as a URL [5]. 
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