f‘ \ \ \\ Distributed Systems and Internet Technologies Lab ket L
D f | & ra1 Distributed Data Intelligence and Technologies Lab FIRENZE
‘ta , Department of Information Engineering (DINFO) DINFO

University of Florence

http:llwww.disit.dinfo.uniﬁ.it

Km4City - the Knowledge Model 4 the City

Smart City Ontology

Authors: Pierfrancesco Bellini, Paolo Nesi, Nadia Rauch

referent coordinator: paolo.nesi@unifi.it

Knowledge base accessible as spargl entry point as shown from http://log.disit.org

OWL version accessible from: http://www.disit.org/6506

http://www.disit.org/km4city/schema/

http://www.disit.dinfo.unifi.it @

version 3.0, of this document

referring to version 1.6.2 of the ontology
date 31-08-2015

The ontology is available under Creative Commons Attribution-ShareAlike, 3.0 license.

Questo documento in Italiano: http://www.disit.org/6461

This document in English: http://www.disit.org/5606

Aim
* Provides a unique point of service with integrated and aggregated data and tools for
— Qualified users: public administrations = developers
— Operators: mobility, energy, SME, shops, 2> developers
— Final users > citizens, students, pendular, tourists
¢ Problems:
— Aggregated Data are not available:
e notsemantically interoperable, heterogeneous for: format, vocabulary, structure,
velocity, volume, ownership/control, access / license, ...
e AsOD, LD, LOD, private data, ..
— Lack of Services and tools to make the adoption simple

KmA4City is in use for the Sii-Mobility SCN and for RESOLUTE H2020 projects. km4city has been higly ranked
by Ready4SmartCities FP7 CSA http://smartcity.linkeddata.es . On the oher hand, all DISIT tools for smart
city are agnostic with respect to the data model.

Kmdcity provides a collection of models and tools for smart city developers and administrators.
This work has been performed at DISIT lab for a number of smart city projects, see also for its use on:

e SMART CITY at DISIT Lab: http://www.disit.org/6056
e Linked Open Graph: http://log.disit.org
e Service Map: http://servicemap.disit.org

e Slide on km4city status, trends and tools http://www.disit.org/6669

e Smart city ingestion process document and process in place: http://www.disit.org/6058

NIV A . d ; = ® DISIT Lab, Distributed Data Intelligence and Technologies

Dl - Dustebuted Systems and Internet Technologles

CIRENZE . b D nent of Information Engineering (DINFO)

I [I I: N ‘{l— c I r 0 a m a ﬁ http:fhwrw disit.dinfo.uniflit
.

http://servicemap.disit.org

* Smart City API
« http://log.disit.org
+ http://www.disit.org/fodd
http://www.disit.org/tv Twitter Vigilance
http://smartds.disit.org \Beta testing

-Embed \
-more API Sma
-iB€acon

Kmdcity 1.1

* Tuscany Map
* Services
* AVM
* Sensors §
* Parking

Started

You can find updated information on the following links and documents:

e Service Map tool: http://servicemap.disit.org a tool for developers to pose geographic queries
(learn and generate code queries in an esy manner) and see the knowledge base produced by the
harvesting process that includes: "grafo strade" (street graph) from Tuscany region, open data from
Florence Municipality, traffic monitoring, geo and weather information from LAMMA, traffic
sensors. Some of them in real time. It accessed to an RDF Store based on Florence open data and
on Tuscany region mobility data on the basis of Km4City model.

(0]

O O 0O 0O 0 O

(0]

Data Sets included into the Km4City model as ServiceMap.disit.org, coverage all Tuscany
for almost all structural data and main services. More details on Florence and Empoli for
real time information in the Florence Metropolitan Area.

API of the ServiceMap service http://www.disit.org/6597

ServiceMap embedded into third party web pages

KmA4City tools and features in Italiano, km4city per principianti

Demonstrative Mobile Application http://www.disit.org/6595

Twitter Vigilance: to follow the users and sentiments on keywords passing on twitter
Smart Decision System, decision support system for smart city based on System Thinking,
connected to Km4City model.

Origin Destination Matrix for Smart City and user behavior analysis

e KmA4City Smart City Ontology and services: knowledge model and ontology for Smart City

0

O O 0O 0O OoOO0oOOoOOo

(0]

documentation ENG: http://www.disit.org/5606

documentation ITA: http://www.disit.org/6461

image: http://www.disit.org/6507

km4city ontology .. the OWL and triple versions http://www.disit.org/6506

Status, plan and trend of Km4City, next planned developments, http://www.disit.org/6669
classification of service categories

km4city Schema according to W3C http://www.disit.org/km4city/schema

LOG: Linked Open Graph http://log.disit.org,

SPARQL entry point test http://log.disit.org/spqlquery/

RIM: RDF Index Manager: user manual, for versioning of graph databases RDF stores.
DIM: Data Ingestion Manager: http://www.disit.org/6732

e Services and tools:

(0]

o

o
o

Service Map tool: http://servicemap.disit.org to pose geographic queries and see the
knowledge base produced by the harvesting process and provide access to data via API
data aggregator and ontological model Km4City, see above

API of the ServiceMap service http://www.disit.org/6597

Big Data Smart City processes and tools for km4city, Dec 2014 describing the process for
ingesting open data and private data, static and real time data towards and RDF Store
LOG.disit.org http://LOG.disit.org graph can be used to browse the knowledge model of
Smart City, just an example of a Florence segment.
http://log.disit.org/service/?graph=71de8caef449ed56143aa95c8c8266ab From that, you
can see the whole DISIT knowledge knowledge model for Florence, based on Km4cCity
ontology.

SCE, Smart City Enginee decision support, http://www.disit.org/6515

SmartDS, Smart Decision System, http://www.disit.org/6711

¢ KmACity final user tools:

o
o
o
o
o

(0]

WEB Km4City Tool, http://www.km4city.org

KmA4City Mobile Application, for ANDROID on Google Play
Km4City Mobile Application, for Apple iOS, iPhone, iPad, etc.
Km4City Mobile Application for ANDROID on Knicket App Search
Km4City Mobile Application, for Windows Phone, to appear
Km4City Mobile Application, for other platforms, to appear

e DISIT Smart City Articles and conferences, slides, video and presentations:

(0]

European Data Forum, Luxembourg, november 2015

o

O O O O O

o
o
o
(o}

(0]

Streaming on Cognitive Science Community http://cognitive-
science.info/community/weekly-update/, 10th of september 2015, streaming of IBM
community

DMS 2015, Canada, Vancouver, Canada, 31 Agust- 2 September, km4city with RIM
SMAU Firenze, 2015, finalist

Forum PA: Roma may 2015

Florence Open Data Day 2015, http://www.disit.org/fodd

describing Km4City model and the ingestion process, http://www.disit.org/6500, while a
newer version is published on the international JLVC of Elsevier in the 2014

IEEE ICECCS 2014, Tianjin, China

handimatica 2014: video, le smart city, intervention at the conference opening
handimatica 2014: Slides, http://www.disit.org/6553

Past DISIT e smart city: http://www.disit.org/6515

La citta invisibile, digital data nei contesti urbani, Aula Magna, Gennaio 2015, Video

Projects, smart city:

o

(o}
o
o

o
o

Sii-Mobility: National Smart City project (DISIT coordinator)

RESOLUTE H2020, resilience of smart city(DISIT coordinator)

Coll@bora: project Social Innovation, smart city national (DISIT coordinator)

Agreement with LAMMA and IBINET CNR for the usage of Twitter Vigilance for climate and
environment monitoring of human perception

TesysRail: CTN SC: Cluster Technological National, Smart City and Communities

SMST: CTN SC: project on Social Museum and Smart Tourism

Collaborations:

o
o
o

o
o

Agreement among UNIFI e Florence Municipality

Agreement among UNIFI DISIT and Tuscany Region MIIC, transport Observatory
Agreement among UNIFI DISIT and LAMMA and CNR IBINET for Blog and Twitter vigilance
and meteo source channels assessment, http://www.disit.org/tv

DISIT is a Smart City Node of the CINI smart city national consortium.

DISIT is a node of the Big Data lab of CINI

Citations and ranking:

o kmdcity has been ranked by Ready4SmartCities FP7 CSA http://smartcity.linkeddata.es
Standards:

o DISIT belong to standardization group: ISO/IEC JTC 1/SG 1 on Smart Cities

o}

State of the Art

To interconnect the data provided by the Tuscany Region, the Open Data of the City of Florence, and the
other Static and Real Time dataset, we started to develop a Knowledge Model, that allows to collect all the
data coming from the city, related to mobility, statistics, street graph, etc.

A state of the art study on ontology related to Smart Cities, was carried out.

The only ontology presented as a "help to transform cities into Smart Cities" is SCRIBE, made by IBM, on
which not much information is available online free of charge
[http://researcher.watson.ibm.com/researcher/view project.php?id=2505].

Among other ontologies that may be related to Smart Cities, we mention the OTN, Ontology of
Transportation Networks.

- Composite_Attri

Manoeuvre), transfer points (macroclass which includes classes such as

L -
Feature

This ontology defines the entire transport system in all its parts, from

the single road / rail, to the type of maneuvering that can be performed

on a segment of road or public transport routes. As you can see from the

— ' figure, the OTN includes the concepts expressed in the 5 main macro
classes, attributes composites (where there are classes like TimeTable,
Accident, House_Number_Range, Validity_Period,

' Maximum_Height_Allowed), relationships (in which we find the

Road, Road_Element, Building, and others), geometry (ie classes Edge
and Face Node), and features (which contains classes such as Railways, Service, Road_and_Ferry_Feature,
Public_Transport).

On the net there are also many other ontologies related to sensor networks, such as the
SemanticSensorNetwork Ontology, which provides elements for the description of sensors and their
observations [http://www.w3.0rg/2005/Incubator/ssn/ssnx/ssn] and FIPA Ontology which is more focused

on the description of the devices and their properties both HW and SW
[http://www.fipa.org/specs/fipa00091/PCO0091A.html# Toc511707116]. We therefore believe these
ontologies are to be taken into account when we will have data applicable to these areas.

Analyzing data made available by the PA (mainly by the Tuscany Region) it was found that, in relation to the
roads graph, data could be easily mapped into large parts of the OTN, concerning to Street Guide; taking
into account these observed similarities, we think it could be useful, in order to associate a more precise
semantics to the various entities of our ontology, make explicit reference to the OTN, to make the concepts
clearer and more easily linkable to other, wanting to follow guidelines for the implementation of Linked
Open Data (http://www.w3.org/Designlssues/LinkedData.html).

Due to the many similarities with the data model at our disposal, the OTN ontology has become one of the
vocabulary used during the development of the km4city model.

However, another interesting ontology more e-commerce oriented, is the GoodRelations Ontology, a
standardized vocabulary that allows to describe data related to products, prices, stores and businesses so
that they can be included into already existing web pages and they can be understood by other computers;
so products and services offered can increase their visibility into latest generation search engines, or
recommendations systems and similar applications.

The possible integration between our KnowledgeModel and the GoodRelations ontology could be achieved
at class level: the classes km4c:Entry and GoodRelations:Locality can be connected to interconnect the
represented service to the geolocated couple address-housenumber, (through the ObjectProperty kméc:
hasAccess).

Even Schema.org ontology, which already incorporates the GoodRelation project, has been central to the
definition of events: the created class inherits the structure of the schema: Event class and it was then
expanded based on information in our possession; the same ontology has been exploited for the definition
of companies contact card.

Another ontology that has been used for the definition of the geometric forms, is the geoSPARQL, whose
integration projects the Km4City Ontology towards the use of geoSPARQL query language.

The Knowledge Model

The km4city knowledge model will enable interconnection, storage and the next interrogation of data from
many different sources, such as various portals of the Tuscan region (MIIC, Muoversi in Toscana,
Osservatorio dei Trasporti), Open Data and Linked Data, provided by individual municipalities (mainly
Florence). It is therefore evident that the ontology will be built, will not be small, and so it may be helpful to
view it as consisting of various macro classes, and to be precise, at present, the following macro-categories
have been identified:

1. Administration: the first macroclass that is possible to discover, whose main classes are PA,
Municipality, Province, Region, Resolution.

2. Street Guide: formed by classes like Road, Node, RoadElement, AdminidtrativeRoad, Milestone,
StreetNumber, RoadLlink, Junction, Entry, EntryRule and Maneuver.

3. Points of Interest: includes all services, activities, which may be useful to the citizen, and that may
have the need to reach. The classification of individual services and activities will be based on
classification previously adopted by the Tuscany Region. Digital Location and scheduled Events (real
time data), from the municipality of Florence, are also included in this macroclass.

4. Local Public Transport: currently we have access to data relating to scheduled times of the leading
LPT, the graph rail, and real-time data relating to ATAF services. This macroclass is then formed by
many classes like TPLLine, Ride, Route, AVMRecord, RouteSection, BusStopForeast, Lot, BusStop,
RouteLink, TPLunction.

5. Sensors: the macroclass relative to data coming from sensors is developing. Currently in the
ontology have been integrated data collected by various sensors installed along some roads of
Florence and in that neighborhood, and those relating to free places in the major parks of the
whole region; in our ontology is already present the part relating to events/emergencies, where,
however, the collected data are currently very limited in number plus several months old. In
addition to these data, in this macroclass were included also data related to Lamma's weather
forecast.

6. Temporal: macroclass pointing to include concepts related to time (time instants and time
intervals) in the ontology, so that you can associate a timeline to the recorded events and can be
able to make predictions.

7. Metadata: set of triples associated with the context of each dataset; such triples collect information
related to the license of the dataset, to the ingestion process, if it is fully automated, to the size of
the resource, a brief description of the resource and other info always linked to the resource itself
and its ingestion process.

Let us now analyze one by one the different macro classes identified.

The first macroclass, Administration is composed as shown in the following figure.

foaf:Organization <=
|
|
|
gis:thasGeometryp» gis:Geometry |
|
Resolution :
.
o
23
Municipalit — ©
District +—belongToMunicipality? sl -: 9
<«€—hasDistrict: | approvedByP 2
7y T |
hasMunicipality : |
| hasResolution |
isPartOfProvince I
v | '
|
L |
Province SubClassOf Pa — -
]
| I
. | hasStatistic
hasProvince | ¢
isPartOfRegion I
v |
: StatisticalData
Region —d

The main class is km4c:PA, which has been defined as a subclass of foaf:Organization, link that helps us to
assign a clear meaning to our class. The 3 subclasses of km4c:PA are automatically defined according to the
restriction on ObjectProperties (represented in the figure by solid lines). For example, the Region class is
defined as a restriction of the class PA on ObjectProperty km4c:hasProvince, so that only the PA that
possess provinces, can be classified as a region. Another example: to define the PA elements that make up
the Municipality class was instead used a restriction on ObjectProperty km4c:isPartOfProvince, so if a PA is
not assigned to a province, it cannot be considered a municipality.

During the establishment of the hierarchy within the class PA, for each step were defined pairs of inverse
ObjectProperties: kmd4c:hasProvince and kmd4c:isPartOfRegion, kmd4c:hasMunicipality and
km4c:isPartOfProvince.

Connected to the class kmdc:PA through the ObjectProperty kmdc:hasResolution, we can find the
kmd4c:Resolution class, whose instances are represented by the resolutions passed by the various PA note.
kmd4c:hasResolution ObjectProperty has its inverse, that is, km4c:approvedByPa.

The neighborhoods in which a city can be administratively divided are represented by the km4c:District
class; this class is directly connected to the class km4c:Municipality through a pair of reverse
ObjectProperty: km4dc:belongToMunicipality and km4c: hasDistrict.

The last class in this macroclass is km4c:StatisticalData: given the large amount of statistical data related
both to the various municipalities in the region, but also to each street, that class is shared by both
Administration and Street Guide macroclass. As we will see in the next macroclass description, the class

7

kmdc:StatisticalData is connected to both km4c:Pa and kmdc:Road through the ObjectProperty
km4c:hasStatistic.

The macroclass Street Guide is instead shown in the following figure.

otn:Edge
|
|
|
otn:Node rsubClassOf— — - |
|
<(subClassOf |
L i | Junction | !
Administrat : !
iveRoad Milestone | 2
jendJunctionrtjunctiol ©
s ! 2
el >
z ' i
hasRoadElement & hasSegment—’f‘* RoadLink -~ pIaCEdInEIementhaslnternaIAccess
; < | | | hasExternalAccess 1
coincidewith _TOrmAdminRoad | g — bolonaToR ;\ [
| ' ¢ elong ToRoa hasStreetNumber | StreetNum
__J endsAtNode Entry
««—isPartOfRoad— RoadEleme ber
Road containsElement Node g
‘ nt startsAtNode S
|
Fft _ ®
subClassOf hasSecondElem. hasFirstElem §
hasThirdElem | 2
'8“
o
otn:Road otn:Road_E Maneuver —1&_, otn:Maneu
lement 'y | 5 e
S c T @
o [
8 E L
c 9 [
<« s E
%3 c
u ©
EntryRule 3 b=
© 2

Clearly this macroclass is the most complex of the Ontology, since it represents the entire Street Graph,
various house numbers, access to these latter, but also rules of access to various roads, and finally
permitted maneuvers.

The main class, in the middle of Street Guide macroclass, is km4c:RoadElement, which is defined as a
subclass of the corresponding element in the ontology OTN, ie Road Element. Each RoadElement is
delimited by a start node and an end node, detectable by the ObjectProperties kmd4c:startsAtNode and
kmdc:endsAtNode, which connect the class object of the class km4c:Node. Some restrictions have been
specified in the km4c:RoadElement class definition, related to the km4c:Node class: a road element must
have both km4c:startsAtNode and km4c:endsAtNode ObjectProperty, both with a cardinality exactly equal
to 1. One or more road elements forming a road: the class km4c:Road is in fact defined as a subclass of the
corresponding class in the OTN, ie the homonymous Road, and with a cardinality restriction on
km4c:containsElement ObjectProperty (whose inverse property is km4c:isPartOfRoad), which must be a
minimum equal to 1, ie cannot exist a road that does not contain at least one road element. Also the class
km4c:AdministrativeRoad, which represents the administrative division of the roads, is connected to the
class kmdc:RoadElement through two inverse ObjectProperty kmdc:hasRoadElement and
kmdc:formAdminRoad, while it is connected with only one ObjectProperty to the km4c:Road class
(kmdc:coincideWith). Better clarify the relationship that exists between kmdc:Road,
km4c:AdministrativeRoad and km4c:RoadElement: a Road's instance can be connected to multiple
instances of km4c:AdministrativeRoad (eg if a road crosses the border between the two provinces), but the

8

opposite is also true (eg when a road crosses a provincial town center and assumes different names), ie
there is a N:M relationship between the two classes.

On each road element is possible to define access restrictions identified by the class km4c:EntryRule, which
is connected to the class km4c:RoadElement through 2 inverse ObjectProperties, ie kmdc:hasRule and
km4c:accessToElement. The km4c:EntryRule class is defined with a restriction on the minimum cardinality
of ObjectProperty km4c:accessToElement (set equal to 0), which in most cases only one element has an
associated road, but in some exceptional cases, there is no association. Access rules allow to define
uniquely a permit or limitation access, both on road elements (for example due to the presence of a ZTL) as
just seen, but also on maneuvers; for this reason, the class km4c:Maneuver and the class kmd4c:EntryRule
are connected by km4c:hasManeuver ObjectProperty. The term maneuver refers primarily to mandatory
turning maneuvers, priority or forbidden, which are described by indicating the order of road elements
involving. By analyzing the data from the Roads graph has been verified that only in rare cases maneuvers
involving 3 different road elements and then to represent the relationship between the classes
km4c:Maneuver and km4c:RoadElement, were defined 3 ObjectProperties: km4c:hasFirstElem,
km4c:hasSecondElem and km4c:hasThirdElem, in addition to the ObjectProperty that binds a maneuver to
the junction that is interested, that is, km4c:concerningNode kmdc: (because a maneuver takes place
always in the proximity of a node). In the km4c:Maneuver class definition there are cardinality restrictions,
set equal to 1 for km4c:hasFirstElem and km4c:hasSecondElem and set maximum cardinality to 1 for
km4c:hasThirdElem, as for the maneuvers that affect only 2 road elements, this last ObjectProperty is not
defined.

As previously mentioned, each road element is delimited by two nodes (or junctions), the starting one and
the ending one. It was then defined the km4c:Node class, subclass of the same name belonging to ontology
OTN Node class. The km4c:Node class has been defined with a restriction on DataProperty geo: lat and geo:
long, two properties inherited from the definition of subclass of geo: SpatialThing belonging to ontology
Geo wgs84: in fact, each node can be associated with only one pair of coordinates in space, and cannot
exist a node without these values.

The kmd4c:Milestone class represents the kilometer stones that are placed along the administrative roads,
that is, the elements that identify the precise value of the mileage at that point, the advanced of the route
from the starting point. A milestone may be associated with a single km4c:AdministrativeRoad, and is
therefore defined a cardinality restriction equal to 1, associated with ObjectProperty
kmdc:placedinElement. Also the km4c:Milestone class is defined as subclass of geo:SpatialThing, but this
time the presence of coordinates is not mandatory (restriction on maximum cardinality must be equal to
one, but that does not exclude the possible lack of value).

The street number is used to define an address, and it is always logically related to at least one access, in
fact every street number always corresponds to a single external access, which can be direct or indirect;
sometimes it can also be a internal access. Looking at this relationship from the access point of view, you
can instead say that each of these is logically connected to at least one street number. Were then defined
StreetNumber and Entry classes.

With the data owned is possible to connect the class km4c:StreetNumber to the class km4c:RoadElement
and to the class km4c:Road, respectively through the ObjectProperties kmd4c:placedinElement and
km4c:belongToRoad. This information is actually redundant and if deemed appropriate, may be delete the
link connect to the class km4c:Road, in favor of the one towards km4c:RoadElement, more easily

9

obtainable from data; it is for this reason that for the ObjectProperty km4c:belongToRoad has been defined
also the inverse km4c:hasStreetNumber.

Within the ontology therefore, the StreetNumber class is defined with a cardinality restriction on the
ObjectProperty "belongToRoad", which must be equal to 1.

Kmd4c:Entry class also can be connected to both the street number and road element where is located. The
relationship between kmdc:Entry and km4c:StreetNumber, is defined by two ObjectProperties,
kmdc:hasinternalAccess and kmd4c:hasExternalAccess, on which have been defined cardinality restrictions,
since, as mentioned earlier, a street number will always have only one external access, but could also have
an internal access (the latter restriction it is in fact defined by setting the maximum cardinality equal to 1, ie
they are allowed values 0 and 1). Also the km4c:Entry class is defined as a subclass of geo: SpatialThing, and
is possible to associate a maximum of one pair of coordinates geo:lat and geo:long to each instance
(restriction on the maximum cardinality of the two DataProperty of the Geo ontology, set to 1, so which
may take 1 value, or none).

The Street macroclass is connected to 2 different Administration through the ObjectProperties
km4c:ownerAuthority and km4c:managingAuthority, which as the name suggests, clearly represent
respectively the public administration which has extensive administrative, or public administration that
manages the road element . This leaves out the representation, only the streets of private property, for
which we have not yet identified the best representation in the ontology .

From a cartographic point of view, however, each road element is not a straight line, but a broken line,
which will follow the actual course of the road. To represent this situation, the classes km4c:RoadLink and
kmdc:Junction have been added: thanks to the interpretation of the KMZ file, we retrieved the set of
coordinates that define each road element, and each of these points will be added to the ontology as an
instance of Junction (defined as a subclass of geo: SpatialThing, with compulsory single pair of coordinates).
Each small segment between two Junction is instead an instance of the class km4c:RoadLink, which is
defined by a restriction on the ObjectProperty km4c:endJunction and kmd4c:startJunction (both are obliged
to have cardinality equal to 1), which connect the two classes.

For the third macro class, that is, Points of Interest, a generic class Service have been defined; it has been
implemented a review of the classes and sub-classes division closely linked to the ATECO code, i.e. the
ISTAT code classification of economic activities; the division available in previous versions of the ontology,
was in fact based on the companies classification at regional level. Unfortunately, the old services already
ingested, which are devoid of ATECO code, will not have a value for the DataProperty km4c:codiceATECO,
but according to the information possessed, will still be reclassified within the new hierarchy created.

The hierarchy has not created with a total correspondence with the entire list of ATECO codes, but has
created to provide more details of subclasses of interest for our purposes (service providers, retail sales,
etc.), and stay more general, where there is less interest (wholesale, industry etc.).

Currently the following classes have been identified: Accommodation, GovernmentOffice, TourismService,
TransferServiceAndRenting, CulturalActivity, FinantialService, ShoppingAndService, healtcare,
EducationAndResearch, Entertainment, Emergency, WineAndFood, IndustryAndManufacturing,

10

AgricultureAndLivestock, UtilitiesAndSupply, CivilAndEdilEngineering, Wholesale, Advertising,
MiningAndQuarrying and Environment. Each of them has a number of subclasses that define which types of
services belong to this class: for example, for the class Accommodation the following subclasses has been
defined Holiday village, Hotel, Summer_residence, Rest_home, Hostel, Farm_house, Beach_resort,
Agritourism, Vacation_resort, Day _care_centre, Camping, Boarding house, Other_Accommodation,
Mountain_shelter, Religiuos_guest_house, Bed_and_breakfast, Historic_residence and Summer_camp.
Currently within Km4City were defined 512 subclasses of services divided as in the following Table:

Accommodation 18
FinancialService 10
Environment 12
MiningAndQuarrying 5

Advertising 2

Wholesale 10
CivilAndEdilEngineering 9

UtilitiesAndSupply 30
AgricultureAndLivestock 7

IndustryAndManufacturing 54
EducationAndResearch 33
Entertainment 27
Emergency 14
TourismService 15
HealthCare 25
WineAndFood 21
CulturalActivity 26
ShoppingAndService 140
GovernmentOffice 15
TransferServiceAndRenting 39

The Service class also has a pair of sub-classes that allow to identify more quickly non-point services; these
two classes, called km4c:Path and km4c:Area, collect respectively linear services the first, represented by a
broken line on the map, while the second collect polygonal services, which are represented by an area on
the map. It is clear therefore that, each not punctual service must be also an instance of one of these two
classes.

It was also defined a further services subdivision, i.e. regular services (km4c: RegularService) and
transversal services (km4c: TransversalService); this subdivision was necessary since, with the inclusion of
new services the possibility that services are connected with each other, has been discovered: for example,
thinking about a restaurant that also offers WiFi service with free access. To handle this situation, it is
therefore necessary to connect the two services to each other, but it should also be possible to identify
only the wifi, as a service. It is therefore clear that there are two types of services, primary services or
regular and secondary services that can be connected to a regular service, through the appropriate reverse
ObjectProperties km4c:hasRegularService and km4c:hasTransversalService.

11

— — TourismService
|
|
IndustryAndManufa | | AgricultureAndLives I
cturing 1 tock :
: - — HealthCare
|
' |
|
EducationAndResea __I_ Wholesale :
rch
| |
| ~— WineAndFood
|
|
— DigitalLocation I
r g . I CivilAndEdilEngineer | |
: Entertainment ’I] ing I
| I
I | ~ — CulturalActivity
| |
|
— Area
F Emergency — -| — UtilitiesAndSupply I
| | |
| |
I | ~ — ShoppingAndService
| : :
I - .
r— Path |_ MiningAndQuarryin I
g I
| I |
: asWKT | ~ — GovernmentOffice
—————— | |
I [[
| |—t Environment |
| i |
otn:Service q——1 | s Ezele | I)
subClassQf | . Accommodation
I | |
I j | |
I I:gis:hasGeometry ! I— Advertising |
| |
| - — FinancialService
T Service «————- subClassOf—L- — — — — — — — — 1
5 |
- S |
E subClassOf — — — — — RegularService !_ _| TransferserviceAnd
J Renting

hasTransverseService

|

| . .

I hasRegularService
|

|

|

— — — — TransverseService

A further part of the Point of Interest macroclass is represented by the integration of Digital Locations
provided by the municipality of Florence. The Digital Location data are collected and published by the
municipality of Florence as Linked Data, representing locations deemed attractive for the city itself, such as
jogging paths, green areas and gardens, monuments and historic buildings, etc. for a total of approximately
3200 different elements. These Digital Location have been re-mapped into the kmd4c:Service class and, if
some of this services have previously been entered, thanks to a reconciliation phase will be possible to
connect the pair Service/DigitalLocation that refer to the same building, service, monument, thanks to an
owl:sameAs triple, in order to make clear that they represent the same object.

The introduction of geoSPARQL ontology, has also allowed to associate to each services a geometric shape:
in fact, a service can be identified as a point (in case of a store, a monument, etc.), or as a path (a broken
line that connects various points of interest, such as a tourist route) or as an area (for example, a polygon
that corresponds to a garden or a park).

12

Another class that was added to this macroclass is the km4c:Event class, which inherits most of its
properties from the schema:Event class, but not only: this class in fact has many additional properties and it
is also connected, thanks to the ObjectProperty scheme:location, to the km4c:Service class, which in this
case corresponds to the place where the event will take place.

The fourth macro class TPL is not complete yet, it only presents data and classes related to metropolitan
bus lines of Florence tramway and rail network; the urban bus lines distribution of other areas and the
suburban bus lines, are easily adaptable to the model made for metropolitan data in Florence.

gis:hasGeometry

PublicTransport
€— — subClassOf— 4 — . P €———scheduledOnlLine Rid
Ju Line iae
1 el
otn:Line § asWKT
| A
hasRoute s —
* concernlLine <>(
L <€«——onRoyte 8 Ly gis:Geometry
otn:Route — —subClassOf <]— — Route «——onRoute ¢
hasFirstSection | L AVMRecord
tn-RouteSecti 5 l hasSection
otn:houtesectio = o
€ — — —subClass &1 L 4 2
n £ 2
a | £ lastSto
“L— RouteSection % | P
T BusStopForecas
| | t Routelunction
Lot endsAtStop =
€———isPartOfLot: startsAtStop s
(9]
| ™ ¢4
< 2 § finishesAtJunction:
<«—P— < 9 peginsAtjunction
I N | 2
otn:StopPoint <« — subClassOf— — — BusStop T RouteLink
'—hasRouteLink—»,

We analyze first the part related to the metropolitan transport in Florence which includes bus
transportation and tramway.

Each TPL lot, represented by kmdc:Lot class, is composed of a number of bus or tram lines (class
km4c:PublicTransportLine), and this relationship is represented by the ObjectProperty km4c:isPartOflLot,
which connects each instance of km4c:PublicTransportLine to the corresponding instance of km4c:Lot. The
PublicTransportLine class is defined as a subclass of otn:Line. Each line includes at least one race, identified
through a code provided by the TPL company; the km4c:PublicTransportLine class was in fact connected to
the class km4c:Ride through the ObjectProperty km4c:scheduledOnLine, on which is also defined as a
limitation of cardinality exactly equal to 1, because each stroke may be associated to a single line.

Each race follows at least one path (the 1:1 match has not been tested on all data, as soon as it occurred,
eventually will include a restriction on the cardinality of the ObjectProperty that connects the two classes,
namely km4c:OnRoute), and the paths can be in a variable number even if referring to a same line: in most
cases are 2, ie the forward path and backward path , but sometimes also come to be 3 or 4, according to
possible extensions of paths deviations or maybe performed only in specific times. The ObjectProperty

13

km4c:onRoute is also used to connect the class km4c:Ride, representing the individual races on a specific
path defined by the TPL operator. Through the ObjectProperty gis:hasGeometry, instances of the class
km4c:Route, can instead be connected to the instance of gis:Geometry class, that contains the line string
representing the actual path of the route.

Each path is considered as consisting of a series of road segments delimited by subsequent stops : to model
this situation, it was decided to define two ObjectProperty linking km4c:Route and km4c:RouteSection
classes, kmdc:hasFirstSection and km4c:hasSection, since, from a cartographic point of view, wanting to
represent the path that follows a certain bus; knowing the first segment and the stop of departure, you can
obtain all the other segments that make up the complete path and starting from the second bus stop,
identified as a different stop from the first stop, but that it is also contained in the first segment, we are
able to reconstruct the exact sequence of the stops, and then the segments, which constitute the entire
path . For this purpose has been defined also the ObjectProperty kmd4c:hasFirstStop, which connects the
classes km4c:Route and km4c:BusStop .

Applying the same type of modeling used for road elements, two ObjectProperty have been defined,
km4c:endsAtStop and km4c:startsAtStop, to connect each instance of km4c:RouteSection to two instances
of the class km4c:BusStop, class in turn defined as a subclass of OTN:StopPoint. Each stop is also connected
to the class kmdc:Lot, through the ObjectProperty km4c:isPartOfLot, with a 1:N relation because there are
stops shared by urban and suburban lines so they belong to two different lots.

Possessing also the coordinates of each stop, the class BusStop was defined as a subclass of
geo:SpatialThing, and was also termed a cardinality equal to 1 for the two DataProperty geo:lat and
geo:long.

Wishing then to represent to a cartographic point of view the path of a bus, ie a Route instance, we need to
represent the broken line that composes each stretch of road crossed by the means of transport itself and
to do so, the previously used modeling has been reused to the road elements: we can see each path as a
set of small segments, each of which delimited by two junctions: were then defined km4c:RouteLink and
kmd4c:Routelunction classes, and the ObjectProperty kmdc:beginsAtJunction and kmd4c:finischesAtJunction.
The kmd4c:Routelink class was defined as a cardinality restriction of both just mentioned ObjectProperty,
imposing that it is always equal to 1 . The km4c:Route class is instead connected to the km4c:RouteLink
class through km4c:hasRoutelLink ObjectProperty.

The km4c:BusStop class is also connected to the km4c:Road class belonging to the Street Graph macroclass,
through the ObjectProperty km4c:isinRoad, thanks to which it is more simple to localize at municipality
level each individual stops.

The part relating to RailwayGraph is mainly formed by the km4c:RailwayElement class (defined as a
subclass of the OTN:Edge), whose instances represent a single railway element; each element can compose
a railway direction, that is a railway line having particular characteristics of importance for traffic volume
and transport relations on which it takes place, and that links the main nodes or centers of the entire rail
network, or a railway section (section of the line in which you can find only one train at a time that is
usually preceded by a "protective" or "block") or a railway line (ie the infrastructure that allows trains or
other railway convoys to travel between two places of service). In addition, each rail element, begins and
ends at a railway junction, ie an instance of the class kmd4c:RailwaylJunction, defined as a subclass of the
OTN:Node. There is also the TrainStation classes that is just a train station, and the class km4c:Goodsyard

14

that corresponds to a freight station; usually this both classes correspond to a single instance of the

kmd4c:RailwayJunction class.

Also the km4c:RailwayElement class is connected to gis:Geometry class, because each railway element can
be seen as a line string that represents the true shape of the railway line in that section.

RailwayDirec
tion

isComposed ByT
composeSection
€isPartOfLine ¢

hasElement

RailwayLine

composeSection

isComposedByElempnt

RailwaySecti
on

RailwayElem rendAtiunction
ent startAtJunction

GoodsYard
otn:Edge
Railwayluncti |
correspondToJunction X
on L
' :
————T— 'subCIassOf—{‘ ——————————————— -
correspondToJunctionwal?SSOf
I |
|
TrainStation :
L————» otn:Node

Sensors Macro class has not yet been completed, but for now it consists of parts shown in the figure, and
respectively relating to the car parks sensors, to the weather sensors, to the sensors installed along roads

and rails and to the AVM systems.

TransferService

observeCarPark

asCarParkSensor

CarParkSensor

relatedToSensor
hasRecord

SituationRecord

ﬂ

Municipality

£ £
© o
S o
g &
S 9]
S =
o ©
= (]
e =
2 ©
(] =
|L i
WeatherReport

——hasPrediction— WeatherPrediction

15

placedOnRoad———p>
SensorSite €——measuredBySensor Road
1

—hasObservation

formsTable
SensorSiteTable Observation
—— - SubClassOf— — — — — — — — — — ——— — — —— = -
| I [[
| I [[
| | |
TrafficHeadway TrafflcCo:centratlo TrafficFlow TrafficSpeed

Ride
Road
PublicTransportLine
2 kel
5 A B
g £
b3 o
concernline: <>£ 3z
a &
«€¢——onRoute 2 S
Route «€——onRoute ¢ Jm
Beacon
AVMRecord
——lastStop™
I hasBObservation
BusStop includeForecast
measuredByBeacon

[

BusStopForecast BeaconObservation

a'cBusS»’topJ
hasForecast

The first part shown in the figure is focused on the real-time data related to parking. The TransferService
class, in fact, is connected to the CarParkSensor class, which represents the sensor installed in a given
parking and which will be linked to instances of the SituationRecord class, which represent the state of a
certain parking at a certain instant; the first link, ie the one between kmd4c:TransferService class and
kmdc:CarParkSensor class, is realized through two invrse ObjectProperty, kmdc:observe and
km4c:isObservedBy, while the connection between km4c:CarParkSensore class and km4c:SituationRecord
class, is performed via the reverse ObjectProperty, kmdc:relatedTo and kmd4c:hasRecord. The class
kmdc:SituationRecord allows to store information about the number of free and occupied parking spaces,
in a given moment (also recorded) for the main car parks in Tuscany region.

The second part of the received data in real time, concerns the weather forecast, available for different
areas (and thus connected to the class Municipality), thanks to LAMMA. This consortium will update each
municipality report 1 or 2 times a day and every report contains forecast of 5 days divided into range,

16

which have a greater precision (and a higher number) for the nearest days until you get to a single daily
forecast for the 4th and 5th day. This situation is in fact represented by the WeatherReport class connected
to the km4c:WeatherPrediction class via the ObjectProperty kmdc:hasPrediction. Km4c:Municipality class is
instead connected to a report by 2 reverse ObjectProperty: kmdc:refersToMunicipality and
kmdc:hasWeatherReport.

The third part of the Real Time data concerns the sensors placed along the roads of the region, which allow
to make different detection related to traffic situation. Thanks to additional information received recently
from Osservatorio dei Trasporti, it was possible to accurately geo locate all sensors. Sensors are divided into
groups, each group is represented by kmdc:SensorSiteTable class and each instance of the class
km4c:SensorSite (that represent a single sensor) is connects to its group through the ObjectProperty
km4c:formsTable and, as mentioned earlier, each instance of km4c:SensorSite class can be connected only
to the km4c:Road class (through the ObjectProperty kmdc:installedOnRoad). Each sensor produces
observations, which are represented by instance of km4c:Observation class and these observations can
belong to 4 types, ie they can be related to the average velocity (km4c:TrafficSpeed subclass), or related to
the car flow passing in front of the sensor (kmdc:TrafficFlow subclass), related to traffic concentration
(km4c:TrafficConcentration subclass), and finally related to the traffic density (kmdc:TrafficHeadway
subclass). The classes km4c:Observation and Sensor are connected via a pair of reverse ObjectProeprty,
km4c:hasObservation e km4c:measuredBySensor.

The fourth part of RealTime macroclass concerns the AVM systems installed on most of ATAF busses, and it
is mainly represented by two classes, km4c:AVMRecord e km4c:BusStopForecast: the first class mentioned
represents a record sent by the AVM system, in which, as well as information on the last stop done
(represented by the , kmdc:lastStop ObjectProperty that connects the classes , km4c:AVMrecord to ,
km4c:BusStop), GPS coordinates of the vehicle position, and the identifiers of vehicle and line, we also find
a list of upcoming stops with the planned passage time; this list have a variable length and it represents
instances of the km4c:BusStopForecast class. This latter class is linked to the class km4c:BusStop through
km4c:atBusStop ObjectProperty so as to be able to recover the list of possible lines provided on a certain
stop (km4c:AVMRecord class is in fact also connected to kmd4c:Line class via kmd4c:concernline
ObjectProperty).

The fifth part of the RealTime macroclass, as previously anticipated, regards beacons, for which were
created two classes, the km4c:Beacon, which represents a single device installed in the city, and the
kmd4c:BObservation class, which represents instead, a single observation reported by each functional
element; this two classes are connected each other via a pair of reverse ObjectProperty
km4c:hasBObservation and kmdc:measuredByBeacon. Each beacon is uniquely identified by an
identification code, and three other codes, the uuid (Universally Unique lIdentifier, It contains 32
hexadecimal digits, split into 5 groups, separated by dashes) which uniquely identifies the owner of the
beacon (so if a store has 10 beacons, all beacons have the same uuid), major and minor that instead
identifying respectively a group of beacons and the number of each element within the group identified
with the same major code; coordinates that identify the location where the beacons are located, are also
available. The information that a beacon is able to return are the signal strength, the coordinates where it
contacts a user, and the date and time of the contact.

Finally, the last macroclass, called Temporal Macro class, is now only "sketchy" within the ontology, and it is
based on the Time ontology (http://www.w3.org/TR/owl-time/) but also on experience gained in other
projects such as OSIM. It requires the integration of the concept of time as it will be of paramount

17

importance to be able to calculate differences between time instants, and the Time ontology comes to help
us in this task.

AVMRecord —haslLastStopTime
€——instantAVM

includeForecast

BusStopForecast —hasExpectedTime
INnstantrorecdst
—I l A\ 4
instantParking—,
measuredTimep» time:Instant b) T'g i onR g
Observation €—instantObserv- &—observationTime: ituationRecor
instantWReport-»
€—instantBObserv| dat T‘p WeatherR .
BeaconObservation | updatelime eatherRepor

measuredDate

We define fictitious URI #instantForecast, #instantAVM, #instantParking, #instantWreport, #instantObserv
to following associate them to the identifier URI of a resource referred to the time parameter, ie
respectively km4c:BusStopForecast, km4c:AVMRecord, kmd4c:SituationRecord, km4c:WheatherReport and
finally km4c:Observation.

The fictitious URI #instantXXXX, will be formed as concatenation of two strings: for example, in the case of
BusStopForecast instances, it will be concatenate the stop code string (which allows us to uniquely identify
them) and the time instant in the most appropriate format. Is necessary to create a fictitious URI that links
a time instant to each resource, to not create ambiguity, because identical time instants associated with
different resources may be present (although the format in which a time instant is expressed has a fine
scale) .

Time Ontology is used to define precise moments as temporal information, and to use them as extreme for
intervals and durations definition, a feature very useful to increase expressiveness.

Pairs of ObjectProperties have also been defined for each class that needs to be connected to the class
Instant: between classes time:Instant and km4c:SituationRecord were defined the inverse ObjectProperties
kmdc:instantParking and kmd4c:observationTime, between classes km4c:WeatherReport and time:Instant,
km4c:instantWReport and kmdc:updateTime ObjectProperties have been defined, between classes
kmdc:Observation and time:instant there are the reverse ObjectProperties km4c:measuredTime and
kmdc:instantObserv, between BusStopForecast and time:Instant we can find km4c:hasExpectedTime and
km4c:instantForecast ObjectProperties, and finally, between km4c: AVMRecord and time:Instant, there are
the reverse ObjectProperties kmdc:haslLastStopTime and kmd4c:instantAVM; finally between classes
km4c:BeaconObservation and time:Instant were defined the reverse properties km4c:instantBObserv and
km4c:measuredDate.

18

The domain of all ObjectProperties with instantXXXX name is defined by elements Time:temporalEntity, so
as to be able to expand the defined properties not only to time instant, but also to time intervals.

dct:created

period
. dct:source
overTime
dct:format
| Upadram dct:description
astUpdate dct:right
lastTriples
processType
automaticity
accessType
Context

The seventh macroclass, as already mentioned above, relates to the metadata associated with each
dataset. Sesame [http://rdf4j.org/] allows to define, in the ontology, the Named Graph, that correspond to
the graphs to which is associated a name, also called the context. The context is in practice an additional
field that allows to expand the triple model into a quadruple model; Owlim
[http://www.ontotext.com/products/ontotext-graphdb-owlim-new-2/] during the triple loading phase,
allows to associate different contexts to different sets of triples. In this macroclass were then defined all
DataProperties that allow to store relevant information, related to a certain dataset, for example: date of
creation, data source, original file format, description of the dataset, license associated with the dataset,
type of ingestion process, how much the entire ingestion process is automated, type of access permitted to
the dataset, overtime, period, associated parameters, update date, triples creation date

DataProperties of main classes
Inside the ontology a lot of DataProperties, for which there was the certainty of not being able to use the
equivalent values defined on other ontologies, have been defined.

We analyze below, for the main classes in which they were defined, these properties.

The DataProperty kmdc:typelabel is defined for all existing classes in the ontology, and it is the field where
it is saved the type to which owns the instance; thanks to this property, it is possible to activate a FullText
search which also includes the type of instances.

Within the class km4c:PA were defined only 3 DataProperties, foaf:name that represents the name of the
public administration represented by the considered instance, and its unique identifier present in the
regional system, dct:ldentified, from DublinCore ontology and dct:alternative where will be stored the
municipal code present in the tax code. More information about PA can be found through the link with the
Service class, where in fact there are more details that would otherwise be redundant. The
kmdc:Resolution class, whose instance as seen above are the municipality resolutions, has some
DataProperties for the definition of an Id, dct:Identified, the year of approval, km4c:year, and some other
property that is coming from the ontology DublinCore dct:subject (the resolution object), dct:created (the
date on which the PA has resolved).

Each instance of the km4c:Route class is uniquely identified using the DataProperty dct:ldentified where it
is stored the toponym identifier for the entire regional network, consisting of 15 characters and defined
according to the following rule: RT followed by ISTAT code of the municipality to which the toponym
belongs (6 characters), followed by 5 characters representing the sequential from the character value of

19

the ISTAT code, and finally the letters TO. The roadType instead, represents the type of toponym, for
example:

e Locality, Square, Plaza, Road, Boulevard, Alley, Lane, etc.

Inside the street graph there are also 2 names for each toponym: the name and the extended name, which
also includes the toponym’s type. The name without type, is a string and can be associated with the
DataProperty km4c:roadName, while the long name, will be store in another DataProperty ie
km4c:extendexName and finally, for all the aliases that can be formed (such as for Via S. Marta a possible
alternative could be Via Santa Marta. etc.) is used the dct:alternative DataProperty, so that you can define
more than one alternate name, and then facilitate the subsequent reconciliations phase.

Concerning the km4c:AdministrativeRoad class, in addition to the DataProperties dct:alternative and
km4c:adRoadName, that respectively contain the possible alternative names of the road and its official
name, the DataProperty km4c:amminClass was defined to represent the administrative classification, that
isif aroadis:

e highway

e regional road

e road

e municipal road

e Military Road

e Driveway

Finally the field dct:identifier will store an identifier, which complies with the following rule, defined at the
regional level: 15 characters, starting with the letters RT followed by ISTAT code of the municipality that
owns the administrative road (6 characters), followed by 5 characters representing the sequential number
of all road that have the same ISTAT code, and finally the letters PA.

RoadElement instances are uniquely identified by the DataProperty dct:ldentified, a field of 15 characters
as follows: RT characters followed by 6 characters for the ISTAT code of the belonging municipality,
followed by 5 characters that represent the progressive from the ISTAT code, and finally the ES characters.
Even the km4c:elementType DataProperty has been defined for the class km4c:RoadElement, and can take
the following values:

e roadway trunk

e structured traffic area
e toll booth

e level crossing

e square

e roundabout

e crossing

e structured car park

e unstructured traffic area
e carpark

e competence area

e pedestrian
e connection, motorway link road, interchange

20

e controviale

e ferry boat (dummy element)

In the street graph of the Tuscany region, the functional classification is also associated to the
km4c:RoadElement class, that is defined within the ontology as the km4c:elementClass DataProperty,
whose possible values are:

e highway

e main suburban

e secondary suburban
e thoroughfare

e district urban

e local/to private use

The kmdc:composition DataProperty instead has been defined to indicate the composition of the road to
which the road element belongs to and the values that can assume are "single track" or "separate
roadways". Km4c:elemLocation represents the location of the element, and it can take the following values:

e street level

e bridge
e ramp
e tunnel

e bridge and tunnel

e bridge and ramp

e tunneland ramp

e tunnel, bridge and ramp

Concerning the class road element width, a reference to DataProperty km4c:width was made, which allows

to detect the band of belonging: "less than 3.5m", "between 3.5 and 7.0m," "greater than 7.0 meters" or
"not detected"; for the length instead the reference DataProperty is kmd4c:length, a freely insertable value
that does not refer to any band. Other data available on the streets graph, essential for defining the
maneuvers permitted, is the travel direction of the road element, indicated by km4c:trafficDir DataProperty

which may take one of the following 4 values:

e road section open in both directions (default)

e road section opened in the positive direction (from initial node to final node)
e road section closed in both directions

e road section opened in the negative direction (from final node to initial node)

The operatingStatus DataProperty instead serves to track the operating status of the different road

elements and can take the values "in use", "under construction" or "abandoned". Finally there is also a
DataProperty that takes into account the speed limits on each road element, i.e. km4c:speedLimit.

In the class km4c:StatisticalData were defined DataProperty that allow to associate the actual value (stored
in kmd4c:value), data necessary to maintain intact its meaning, such as the field dct:identifier,
dct:description, dct:created and dct:subject.

21

A node or junction is a point of intersection of the axes of two road elements, and is always a punctual
entity, represented in geometric terms, by a coordinates pair. Instances of the km4c:Node class can be
uniquely identified thanks to the DataProperty dct:ldentified, made, like the previous code, of 15
characters, according to the following rules: the first two characters are RT, followed by the 6-character
ISTAT code of municipality where is located the node, followed by 5 characters of progressive starting from
the value of ISTAT code, and finally GZ characters. Each node is also characterized by a type, represented by
the DataProperty km4c:nodeType, which can assume the following values:

e street level intersection/ fork

e toll booth

e mini roundabout (radius of curvature< 10m)
e change seat

e end (beginning or end RoadElement)

e change place name / ownership / manager
e change width class

e unstructured traffic area

e level crossing

e support node (to define loop)

e change in technical/functional classification
e change in operating status

e change in composition

e intermodal hub for rail

e intermodal hub for airport

e intermodal hub for port

e region boundary

e dummy node
Even in this case, it is useful the insertion of the DataProperty for localization, namely geo:lat and geo:long.

The access rules are described by instances of the EntryRule class, uniquely identifiable through a
dct:ldentified of 15 characters thus formed: the RT characters followed by 6 characters representing the
ISTAT code of the municipality, 5 other characters that represent the progressive starting from that ISTAT
code, and finally the characters PL. The access rules are then characterized by a type, represented by
DataProperty km4c:restrictionType, which can assume the following values:

e Blank (only in case of maneuver)
o Traffic flow direction

e Blocked way

e Special restrictions

e Under construction

e Information about tolls

e Fork

e Forbidden manoeuvres

e Vehicles restrictions

22

In addition to the type, the access rules have also a description, also called restriction value and
represented by DataProperty kmdc:restrictionValue, which can assume different range of values,
depending on the type of restriction concerned:

e Blank possible values:
0 Default Value = “-1”
e possible values for Traffic flow direction & Vehicles restrictions:
0 Closed in the positive direction
0 Closed in the negative direction
0 Closed in both directions
e Blocked way possible values:
0 Accessible only for emergency vehicles
0 Accessible via key
0 Accessible via Guardian
e Special restrictions possible values:
0 No restrictions (Default)
0 Generic Restriction
0 Residents only
0 Employees only
0 Authorized personnel only
0 Staff only
e Under construction possible values:
0 Under construction in both directions
0 Under construction in the travel direction of the lane
0 Under construction in the travel opposite direction of the lane
e Information about tolls possible values:
0 Toll road in both directions
0 Toll road in the negative direction
0 Toll road in the positive direction
e Fork possible values:
0 multi lane bifurcation
0 simple bifurcation
0 exit bifurcation
e Forbidden manoeuvres possible values:
0 prohibited maneuver
0 turnimplicit

The class maneuver presents a substantial difference from other classes seen so far: each maneuver is
indeed uniquely identified by an ID consisting of 17 digits. A maneuver is described by the sequence of the
road elements that affects, ranging from 2 to 3, and from the node of interest, then it will be almost
completely described through ObjectProperties representing this situation.

Within the Streets graph, we find data related to the operation type, bifurcation type and maneuver type
prohibited, but since the last two types are almost always "undefined", has been associated with a
DataProperty only to the type of maneuver, namely km4c:maneuverType, which can take the following
values:

23

o fork

e manovra proibita calcolata (Calculated Maneuver)
e manovra obbligatoria (Mandatory Maneuver)

e manovra proibita (Prohibited Maneuver)

e manovra prioritaria (Priority Maneuver)

The km4c:StreetNumber class, also presents a code dct:ldentified, to uniquely identify the instance of this
class, in the same format as above: the RT characters followed by 6 characters for the ISTAT code of the
municipality, 5 other characters for the progressive from the ISTAT code and finally the characters CV. In
Florence there are 2 numberings, the current in black, and the original red, so was inserted the
km4c:classCode DataProperty, which takes into account just the color of the civic and can take the
following values: red, black, no color. Each number can also be formed, besides the numerical part always
present, by a literal part, represented respectively by km4c:number and km4c:exponent DataProperties. It
was also inserted an additional value, km4c:extendNumber, in which will be stored the number together
with exponent in order to ensure greater compatibility with the different formats in which could be
written/researched instances of this class.

The km4c:Milestone class, as seen above, identifies the value of the mileage progressively, with respect to
its starting point. Even this class has a unique identification code consists of 15 characters, represented by
dct:ldentified: the characters RT, followed by 6 characters for the ISTAT code of the municipality, other 5
characters for the progressive from ISTAT code, and finally, the CC characters.

At each milestone usually is written the mileage, which corresponds to that point and the value of this
writing is stored through the DataProperty kmdc:text; thanks to the information contained in the street
graph, it is trivial to retrieve the name of the street, highway, etc. where the milestone is located, could
then be further defined an ObjectProperty linking the km4c:Milestone class to the km4c:Road class; this
information is still recoverable with an extra step through the km4c:RoadElement class, but it can be easily
inserted if deemed appropriate in the future. Also in this case the DataProperties for localization, i.e.
geo:lat and geo:long, are defined.

Kmd4c:Access is the point element that identifies on the territory directly or indirectly external access to a
specific place of residence/business; access materialized in practice the "plate" of the street number. As
previously mentioned, all access is logically connected to at least one number. Each instance of the Entry
class is uniquely identified by DataProperty dct:ldentified, consisting of 15 characters, like all other codes
seen: RT followed by 6 characters of municipality ISTAT code, then another 5 character of the progressive
from ISTAT code and finally the AC characters. There are only three types of accesses, and this value is
stored into km4c:entryType DataProperty: "direct external access", "indirect external access" and "internal
access", as well as the type of access for this class can be useful to know if there is an access road to
property or not (DataProperty km4c:porteCochere). Also in this case, the DataProperty for localization, i.e.

geo: lat and geo: long, are present.

The kmdc:Service class has been equipped with the contact card of the schema.org ontology
(https://schema.org) to make the description of the various companies more standardized: schema:name,

schema:telephone, schema:email, schema:faxNumber, schema:url, schema:streetAddress,
schema:addressLocality, schema:postalCode, schema:addressRegion to which we added skos:note for any
additions such as the opening hours of an activity sometimes present in the data. In addition, other

24

DataProperty were defined: km4c:houseNumber to isolate the street number from the address, and, when
possible, the DataProperties geo:lat and geo:long for localization.

With the introduction of DigitalLocation the kmd4c:Service class has been enriched with the following
properties:

e kmdc:hasGeometry: property defined to store the set of coordinates associated with the
digitalLocation, which can be a POINT, a LINESTRING and a POLYGON;

e kmdc:routelength: to store the length of the paths (for example of Jogging);

e kmdc:stopNumber: property that indicates the number of stop within the entire route of Tramway
Line 1;

e kmdc:lineNumber: property that indicates the line to which a stop belonging;

e km4c:managingBy: property indicating the manager of DigitalLocation;

e dct:description: property where a description of DigitalLocation is stored;

e kmdc:owner: property that indicates the owner of the DigitalLocation;

e kmdc:abbreviation: property showing the abbreviation of the DigitalLocation name;

e kmdc:type: property indicating the category of the DigitalLocation manager, or the LTZ type or the
museum type or the reference area.

e kmdc:time: property that indicates the opening hours of a DigitalLocation;

e kmd4c:firenzeCard: property that indicates if the DigitalLocation is affiliated with the FirenzeCard
program;

e km4c:multimediaResouce: property to associate images and mp3 file to individual DigitalLocation;

e kmd4c:districtCode: property that specifies the code of the district in which the DigitalLocation is
located;

e kmdc:routePosition: property that indicates the DigitalLocation position within a thematic route;

e kmdc:areacode: property indicating a municipal code for the referenced area;

e kmdc:routeCode: property that specifies the number of thematic route to which the DigitalLocation
refers.

e scheme:price: property that indicates the possible cost of entry;

The class km4c:Event instead possesses all the properties belonging to the schema:Event class and other
properties added based on information provided by the municipality of Florence. For convenience below all
of these properties will be included in a list.

e schema:startDate: property that indicates the event start date;

e schema:endDate: property that indicates the event end date;

e schema:description: contains the event description;

e schema:image: contains, if any,the url of an event reference image;
e schema:name is the name of the event;

e schema:url: website;

e schema:telephone: reference telephone number for the event;

e schema:streetAddress: address where the event will be held;

e schema:addressLocality: city where the event will be held;

e schema:addressregion: province where the event will be held;

e schema:postalCode: Zip code where the event will be held;

e kmdc:houseNumber: civic number of the place where the event will be held;

25

e skos:note: property that will contain any notes or other information for each event;
e scheme:price: property that indicates the possible cost of entry;

e dct:identifier: contains the identifier assigned to the event by the municipality;

e kmdc:eventCategory: property to indicate the event type;

e kmdc:placeName: contains the name of the place where the event will take place;
e kmdc:freeEvent: float variable that indicates if the event is free or not;

e kmdc:eventTime: property that contains the event start time;

In addition to these properties, an event is also fitted with a pair of coordinates to geo localized it, i.e. geo:
lat and geo: long.

The gis:Geometry class, instead, presents only the DataProperty gis:asWKT, which allows to define a unique
string representing the set of coordinates that define the geometric shape of the object, for example:

LINESTRING ((11.21503989 43.77879298, 11.21403307 43.77936126, 11.21385829 43.77947115))

Continuing, the class km4c:CarParkSensor has other properties specifics for car parks: the dct:ldentified,
always defined at the regional level through a 15 characters code beginning with RT and ending with the
initials of the belonging province, kmdc:capacity, i.e. the number of parking places, km4c:fillrate and
km4c:exitrate, respectively the number of vehicles entering/leaving, km4c:carParkStatus, i.e. a string that
describes the current state of the car park (possible values are "enoughSpacesAvailable", "carParkFull"
"noParkingInformationAvailable", etc.), a unique id i.e. dct:identified, the validity status of the record (the
kmd4c:validityStatus DataProperty, which can only be "active" for parking), the km4c:parkOccupancy, i.e.
the number of occupied space, or the corresponding percentage that is instead called km4c:occupied, and
finally the free places, for which it uses the DataProperty kmd4c:free. As regards km4c:SituationRecord class,
some DataProperties have been defined: a unique id dct:Identified, the record validity status (DataProperty
kmd4c:validityStatus, which can only be "active" in the case of parking lots), the km4c:parkOccupancy, i.e.
the number of parking places occupied, or the corresponding percentage that is called instead occupied,
and finally the vacancy parking places for which there is the DataProperty km4c:free.

The kmdc:WeatherReport class is characterized by DataProperty dct:ldentified containing the unique id
which identifies the different reports, kmd4c:timestamp that indicates the time when the report was created
in milliseconds. Were added also DataProperties to express the phase of the moon (km4c:lunarphase), the
time of sunset/sunrise (that is km4c:sunrise and km4c:sunset) and the time of moonrise and moonset
(km4c:moonrise and kmdc:moonset properties). There is also kmdc:heightHour and km4c:sunHeight
DataProperties which represent the time when the sun reaches its maximum height and at which height.
Each instance of km4c:WeatherPrediction is characterized by DataProperties km4c:day which is the day
that is referenced in prediction (the day together with the id of the report, form a unique way to identify
individual forecasts) the minimum and maximum temperature values or real and perceived temperature
values (respectively represented by DataProperties km4c:minTemp, kmdc:maxTemp, kmdc:recTemp,
km4c:perTemp), wind direction (km4c:wind), km4c:humidity that is the percentage of humidity, the level at
which there is snow (km4c:snow), km4c:hour representing the part of the day that is referenced by each
individual forecast contained in a report, and the UV index of the day, represented by km4c:uv.

The kmd4c:SensorSiteTable and kmd4c:SensorSite classes have only one DataProperty concerning the id,
represented by dct:identified. The Observation class instead is completed by DataProperties dct:Identified,
dct:date and DataProperties km4c:averageDistance and km4c:averageTime (representing distance and

26

average time between two cars), km4c:occupancy and km4c:concentration (relative to the percentage of
occupation of road referred to the number of cars and the car concentration), km4c:vehicleFlow (flow of
vehicles detected by the sensors) and data related to the average velocity and the calculated speed
percentile: km4c:averageSpeed, km4c:thresholdPerc and km4c:speedPercentile.

The kmd4c:PublicTransportLine class and km4c:Lot class have both DataProperties as the dct:identifier and
dct:description from DublinCore ontology, representing respectively the number of the line/lot and the
description of the path/lot.

The km4c:Route class rather than dct:identifier, foaf:name and dct:description DataProperties, presents the
field km4c:routeLenght, that is the path length in meters and the path direction (km4c:direction).

The km4c:BusStop class has DataProperties like dct:identifier, foaf:name for the name of the bus stop, and
geo:lat and geo:long belonging to Geo Ontology. These last two DataProperties are also the only ones in
the km4c:Routelunction class, with dct:identifier.

The class km4c:BusStopForecast contains only DataProperties for the time of arrival and the identification,
respectively named km4c:expectedTime and dct:identifier.

The km4c:AVMRecord class requires instead DataProperty to identify the means to which the record refers
(km4c:vehicle), the arrival time to last stop (km4c:lastStopTime), the ride state, that is, whether it is early,
late or in time (kmd4c:rideStatus), the managing company and the company that own the AVM system
(km4c:managingBy and km4c:owner properties), the unique identifier of the record (dct:identifier), and
coordinates geo:lat and geo:long, which indicated the exact vehicle position at the report time.

Finally, the class km4c:Ride has only the dct:identifier DataProperty, like the km4c:RoutelLink class. The
RouteSection class, rather than the identifier, has also the DataProperty km4c:distance, where it is saved
the distance between two successive stops within a route.

Now analyze the DataProperty for classes km4c:Beacon and km4c:BeaconObservation: the first class, in
addition to DataProperty dct:identifier, has the property km4c:owner, which stores the owner’ name of
each beacon, schema:name that contains the name associated with a beacon, km4c:uuid, km4c:minor,
km4c:major, km4c:public (defines if the beacon is public or not), and finally the DataProperty for storing
the location, i.e. geo:lat and geo:long. The second class, km4c:BeaconObservation, has instead, in addition
to dct:identifier that makes unique each reading, the coordinates where the connection has made, stored
in geo:lat and geo:long DataProperties, the dct:date that stores date and time of observation and finally,
the DataProperty km4c:power, indicating the power with which a beacon can connect to a user, which also
allows to precisely determine the distance.

Were also defined properties to be associated to the Context, regarding information coming from the
tables that describe the individual ETL processes which process different public/private data; for each
process, in fact, we defines a source type stored within the field dct:source, the date of ingestion into the
ontology, namely dct:created; the original data format (CSV, DBF, etc.) stored in the dct:format; a brief
description of the dataset in dct:description; the dataset license bound is instead saved into the
DataProperty dct:right; the type of process to which it refers is stored into the kmdc:ProcessType
DataProperty; the DataProperty km4c:automaticity says if the process is completely automated or not, for
example, the street graph datasets can not be fully automated because the process to obtaining data needs
of a person to send and receive emails; DataProperty kmdc:accessType talk about how the data are

27

recovered (HTTP calls, Rest, etc..); km4c:period contains the time (in seconds) between two calls of the
same process; kmdc:overTime indicates the time after which a process must be killed; The DataProperty
km4c:param contains the resource link, if it is an OpenData set retrievable via http; finally km4c:lastUpdate
represents the date of the last data update, while km4c:lastTriples that of the last triple generation.

The class km4c:RailwayLine has only 3 DataProperties, the dct:identifier that contains the unique identifier
of the railway line (a 12 char code starting with the letters RT, followed by 3 characters to identify the
region - TO9 for Tuscany - 5 char of sequential number and finally the letters PF), the foaf:name in which
the convention naming is saved and the dct:alternative in which is instead saved the official name of the
Railway Line.

The kmdc:RailwayDirection class instead has only the first two DataProperty specified for
km4c:RailwaylLine, with the same use: dct:identifier, where is stored in the code consists of 12 char starting
with the letters RT, followed by 3 characters that identify the region - T09 for Tuscany - 5 char to the
sequential number and finally the letters ED, and the DataProperty foaf:name where is stored in the
convention naming.

The class km4c:RailwayElement, has the usual field dct:identifier, consisting of 12 characters that follow the
following rules: RT characters followed by 3 characters of region code (T09 for Tuscany), followed by the 5
numbers of the sequential number, and finally the letters EF. In addition to this, the DataProeprty
km4c:elementType (which can take the following three values "ordinary railroad" "railroad AC/AV" and
"other") has been defined with the km4c:operatingStatus DataProperty, that can take only the values
"railway construction", "railroad in operation" and "disused railway"; the km4c:elemLocation indicates the
rail element location (and can take the only the values "grade-level", "on bridge/viaduct" and "in tunnel");
the three last DataProperties defined are: the km4c:supply DataProperty that specifies whether this is an
"electrified line" or a "non-electrified" line, the km4c:gauge, a field that specified if the gauge is "reduced"

or "standard", and finally the km4c:underpass that can take the following values:

e theitemis not in underpass of any other object
e the element is in underpass of another object
e the element is simultaneously in overpass and underpass of other objects

Other DataProperty that have been defined for the km4c:RailwayElement class are kmdc:length that is the
item length in meters, km4c:numTrack i.e. the number of tracks (0 if the line is under construction or
abandoned), and finally km4c:tracktype, which specifies if the element consists of "single track" or "double
track".

The class km4c:RailwaySection requires the km4c:axialMass DataProperty, i.e. the classification of the line
with respect to the km4c:axial mass, which may take the following values:

e D4 - corresponding to a mass per axle equal to 22.5t
e (C3-corresponding to a mass per axle equal to 20.0 t
e B2 - corresponding to a mass per axle equal to 18.0 t
e A-corresponding to a mass per axle equal to 16.0 t
e undefined

Were then defined DataProeprties km4c:combinedTraffic (that can assume the values "PC80", "PC60",
"PC50", "PC45", "PC32", "PC30", "PC25", "PC22", "lines with the loading gauge FS "and "undefined"),
28

dct:identifier (the usual code 12 char that begins with RT characters, followed by the regional code and 5
number for the sequential number and that ends with a TR), and the foaf:name ie the naming convention
of line.

For Railwaylunction class only 3 DataProperties were defined: dct:identifier, that is the identification code
of 12 char format as in previous cases, but ending in GK, foaf:name, ie the official name for junctions,
stations and rail yard, and finally km4c:juncType, which can take one of the following values:

e rail crossing

e terminal (beginning or end)

e junction (junction or branch)

e station / stop / rail toll

o freight

e interporto

e change of state (COD_STA)

e change of venue (COD_SED)

e variation in the number of tracks (Num_bin)

e power variation (COD_ALI)

e administrative boundary

The class km4c:TrainStation presents the usual 12-digit DataProperty dct:identifier (consisting of RT
followed by 3 char of regional identification - TO9 for Tuscany - 5 char of progressive number and finally the
characters SF), the DataProperty foaf:name in which the official name is memorized; the address retrieved
from the list posted on the RFl's website is stored in the fields schema:addressRegion,
schema:addressLocality, schema:postalCode, schema:streetAddress, and the managing body found on RFl's
website is stored into the DataProperty kmdc:managingAuth; the DataProperty category contains the
category to which the station belongs, and finally km4c:state DataProperty, contains the state of the

station which can take only the values "Active", "not Active" and "optional stops on demand".

The km4c:Goodyard class, in addition to the 12 char code (format as all of the above but ending in SM)
stored in dct:identifier, has the DataProperty foaf:name in which the name of freight facility is saved; the
km4c:railDepartment DataProperty keeps the name of the railway compartment, whereas
km4c:railwaySiding is the definition of the physical characteristic of the junction number, km4c:yardType
indicates whether the yards are public (value "public yard") or if the junctions are for private use (value
"junction in line") , and finally the DataProeprty km4c:state indicates if the yard is "active" or "under
construction."

29

30

