
A Smart City Development kit for designing

Web and Mobile Apps

C. Badii, P.Bellini, P. Nesi, M. Paolucci

University of Florence, Department of Information Engineering,

DISIT Lab, http://www.disit.org , http://www.sii-mobility.org , <name.surname>@unifi.it

Abstract—Smart City services’ effectiveness is enabled by

the integration and availability of data coming from city

operators on different domains: mobility, energy, health, water,

telecom, tourism, culture, etc. They may be open and private

data, static and real time. The most cases, smart city developers

still have to develop their applications by studying several data

sets and API sources, recovering the data models,

reconciliating and aggregating data manually, creating

applications exploiting low level Web Service and/or REST

Call without the support of development tools, and neither of a

semantic data aggregator. In this paper, an innovative tool for

smart city web and mobile Apps development is presented. It

exploits the Km4City data aggregator and semantic model, and

includes: (i) tools for assisting developers for generating calls

to Smart City API via visual queries on a graphical user

interface; and (ii) open source Apps Development Kit for

shortening the development. Finally, the paper reports about

experimental results performed in the usage of the tool in the

context of a large national project called Sii-Mobility which

involved several developers. The same approach is presently

adopted by other large projects as well.

Keywords — smart city, smart city development tools, smart city

API

I. INTRODUCTION

Most of the smart city solutions must cope with big data
aspects as data volume, variety, and veracity [4]. Open data, as
static data, are not typically the main source of information in
the city in terms of volume, neither the most valuable for the
city users (citizens, tourists, commuters, operators, students,
etc.). Most of the big data problems and values in the smart city
platforms are related to real time data as the public transports,
vehicle and human mobility in city, events, parking, weather,
wind, first aid triage, etc. A smart city architecture should be
capable to take advantage of huge amount of big data coming
from several domains, at different velocity for exploiting and
analysing them for computing integrated and multidomain
information, making predictions, detecting anomalies for early
warning and for producing suggestions and recommendations
to city users and operators.

In the last years, many architectural solutions have been
proposed with the aim of making data accessible, aggregated,
usable, and exploitable, etc. [1], [2], [3], [5], and many of them
failed in posing the basis for creating a smart city open
environment for new and smart applications. It is obvious to
state that, cloud and distributed systems approaches are at the
basis of the big data solutions provided for smart city. On the

other hand, the city infrastructure is much more complex, and
the limited focus on only some of the above-mentioned aspects
would create limitations not accepted for the city operators and
for the city development of smart services.

In most cases, the effectiveness of data service system for
Smart City is enabled by the availability of private data owned
and managed by City Operators addressing specific domains:
mobility operator, energy providers, business services (health,
water), telecom operators, tourist operators, universities, etc. In
most cases, the data are collected into open data portals such as
CKAN [http://ckan.org], OpenDataSoft [6], ArcGIS and
OpenData [7], SOCRATA [8] also based on ArcGIS. On the
other hand, most of the open data portals are unsuitable for
exposing semantic interoperable API (application program
interface) to facilitate the production of web and mobile Apps,
and for managing real time data as those produced by IoT
solutions. IoT solutions are typically focussed on producing
and collecting data according to Push/Pull approaches on data
brokers (see ActiveMQ Apache, ORION FiWare, Kafka
Apache, etc.) using several different kinds of protocols and
network levels. At the end, the above mentioned Open Data
portal models and data brokers may provide some API for
direct access to data tables without a semantic integration
expositing reconciliated data for geolocation, identifier,
relationships, time, etc. [9]. With the aim of passing from data
to services, a number of Smart City API solutions have been
proposed on different domains of the smart city such as:
CitySDK [10], EPIC [11], Transport.API [12], Navitia.io [6],
and Km4City [9]. Moreover, Smart City API systems are in
general a very complex to be exploited, especially if they refer
to a great amount of different and complex aggregated data as
those managed by multidomain solutions, see for example
EO15 [13], well-shaped but complex ecosystem. In this sense,
also other smart city API solutions are still a combination of
different APIs.

Despite of the above described large offer of different smart
city architectures and solutions, nothing or very few has been
done on making simple the creation of mobile and web
applications. The smart city developers, typically SME,
researchers, students, and operators, still have to develop their
applications by studying in deep the data sets and provided API
for recovering data models, and reconciliating and aggregating
data (to be repeated at each changing of the data model, and for
each dataset), creating applications exploiting low level Web
Service and/or REST Call without the support of
comprehensive development tools for Apps [15], [14], [1],
[http://ckan.org]. In addition, if the data are coming in real time
as streams, or may change several times per day (sometimes at
model and protocol levels). Thus, a real time data aggregation

http://www.disit.org/
http://www.sii-mobility.org/
http://ckan.org/
http://www.transportapi.com/
http://ckan.org/

server or streaming processes is needed also addressing the real
time reconciliation of data. On the other hand, the world of
mobile and web Apps is changing, the Apps are becoming
more and more dynamic, pushing on HTML5 and on instant
Apps, as the Android Instant Apps aims at running them
without installation. This approach will create the needs to a
continuous renovation of Apps and the reduction of a stable set
of users. In conclusion, the production of web and mobile Apps
has to be faster and cost effective, and probably smaller and
cross linked among each other.

In this paper, an innovative tool for developing smart city
web and mobile Apps is presented. It includes: (i) a set of tools
for assisting developers in understanding the knowledge model
and for generating Smart City API calls by performing visual
query on a graphical user interface; and (ii) a set of open source
Apps for shortening the development (e.g., starting from
scratch on new kind of Apps, as well as developing modules
that can be loaded dynamically from an already installed App)
[16]. The proposed development tool is based on Smart City
API described in [9] which in turn are based on Km4City
(Knowledge Model 4 the City) ontology [17] and RDF storage.
The proposed development tools have been realized in the
context of Sii-Mobility Smart City national project on mobility
and transport of Italian Ministry of Industry and Research, and
presently also used as development tool and model in
REPLICATE H2020, and RESOLUTE H2020 projects of the
European Commission.

 The paper is organized as follows. In Section II, the Sii-
Mobility architecture is described. Section III presents the
smart city development system for supporting the developers in
understanding the data and models, and generating REST Calls
to Smart City API. In Section IV, the architecture of the
modular Smart City App model (Application Development Kit,
ADK) is presented to allow the dynamic loading of modules,
enabling user behaviour tracking and analysis, monitoring user
appreciation of features, etc. Section V presents some
experimental results obtained during validation with the user
group of developers, and by monitoring the real usage of the
Apps with real city users. Conclusions are drawn in Section VI.

II. SII-MOBILITY ARCHITECTURE

The reference architecture of Sii-Mobility smart city
solution is depicted in Figure 1. The solution allows to collect
data coming from different kind of sources (open data, private
data, real time data), belonging to different domains (mobility,
environment, energy, culture, e-health, weather, etc.), and by
means of different protocols of different levels (several IOT,
DATEX [18], Rest, WS, ETSI, OpenM2M, etc.). The
architecture is based on a semantic aggregation of data and
services according to the Km4City ontological model. Data
providers as City Operators and Data Brokers offer data are
collected by the smart city: (i) in pull by using Extract
Transform and Load (ETL), (ii) in push/streaming via
dedicated stream lines and processes. Among the data collected
those provided in open data from the: local municipalities,
Tuscany region (Observatory of mobility, MIIC), LAMMA
weather agency, ARPAT environmental agency, etc., and
several private data coming from City Operators: mobility,
energy, health, cultural heritage, services, tourism, wine and
food services, education, wellness, etc. Moreover, Data
Brokers collect and manage real time data coming from sensors

(IoT), and from vehicular kits (On board Device) which are
developed for monitoring and informing car, bus and bike
drivers, etc. Once the data are collected, the back office
executes several processes for: improving data quality,
reconciliating data, and converting data into triples for the RDF
store of the Knowledge Base, KB [19], implemented by using a
Virtuoso triple store.

All the above mentioned processes are scheduled on the
Big Data processing back office based on a Distributed Smart
City Engine Scheduler (DISCES) tool developed for Sii-
Mobility and made open source. DISCES uses several virtual
machines allocated on the cloud according to their schedule
and requests arriving from the Decision Makers, Developers
and Data Analytics (typically 3.5-5 thousand of jobs per day).
The data collection processes are scheduled according to
different policies, for Open Data (the solution re-upload when
they change), quasi real time data (change a few times per day),
real time data (change every few seconds, such as the position
of the Bus, or the position of the City Users) and taking into
account all the permissions access connected to each different
piece of information managed in the Km4City Knowledge
base.

Figure 1- Sii-Mobility Architecture
For semantic aggregation of data and services, the Km4City

Ontology (http://www.km4city.org) [17], [19] has been
adopted and extended by adding details regarding mobility and
transport, sensors, environment, with respect to former model.
Now Km4City is modeling multiple domain aspects related to
mobility, services, Wi-Fi, cultural services, energy, structure
(streets, civic numbers, green areas, sensors, busses, etc.).

Among the complex data that need to be collected are those
coming from social media. In this case, from Twitter via
Twitter Vigilance platform regarding the monitoring of some
of the topics/“channels” and users related to city services on
mobility and traffic in the city, and on alerts, civil protection
messages, weather forecast (http://www.disit.org/tv).

The above data, collected and aggregated, is exploited by a
number of scheduled data analytics processes to compute
contextualized: user behaviour and mobility analysis, user
recommendations, suggestions and personal assistant messages
according to the city and city operator strategies.

 Therefore, in order to be capable of providing
contextualized information web and mobile Apps collect a

http://www.km4city.org/
http://www.disit.org/tv

number of data provide them to Sii-Mobility via the Sensor
Server and Manager, SSM. The data collected from Apps
(mainly mobiles) are related to many different aspects: the
position of the city users, preferences (user profiles), requests
to the Smart City API, searching queries, action performed on
mobile, velocity, accelerations, etc. [20]. This kinds of data
allows to understand the user behaviour, and thus, to engage
the users generating ad-hoc and contextualized suggestions and
recommendations. For example, detecting when a city user has
less sustainable behaviour for its life and for the city.

Sii-Mobility architecture, in addition to the RDF store for
the knowledge base (developed on top of Virtuoso), presents
several noSQL stores (namely: HBase and Mongo) for storing
tabular data as those arriving from SSM, IOT, streams, and to
make versioning of collected data that have to be passed into
the RDF store for reasoning. This approach allows accessing
tabular data for Data Analytics processes such as those
performed for the: estimations of recommendations,
engagements, traffic flow predictions, parking forecast,
clustering of sensor data behaviour, and anomaly detection.
When needed, federated queries can be performed among RDF
and tabular stores. The resulted architecture provided several
services via Smart City API to Development Tools or to the
city users tools (Applications). The development tools are
described in the next Section, and allow visually formalizing
queries to generate Smart City API REST calls. The generated
calls are sent to the developers via email for shortening the
production of web and mobile Apps as described in the sequel.
The ServiceMap development tool has been used to create
multiplatform Apps, such as “Florence what where”, available
on all the mobile platforms, on HTML5 and Windows 10
(http://www.disit.org/app). The mobile App and of the Smart
City Control Room Dashboard (not described in this paper) are
the main sources of workload for the smart city APIs.

III. SMART CITY APP DEVELOPMENT SYSTEM

The main purpose of the Sii-Mobility architecture is to enrich

and aggregate the data, thanks to the Km4City semantic

Model, and then make the data available for other purposes,

depending on the permission access of each different kind of

data. Thanks to the visual approach the understanding and

access to geo-referenced information stored in the Km4City

KB results to be simplified by a set of services and tools.

These tools have been developed on top of the Smart City API

to simplify the work of developers, with an easy visual

connection on data. The main developers’ tools created to

solve these kinds of problems are: i) ServiceMap [22]; ii)

Application Developer Kit, ADK [16]. The set of development

tools also includes tools to work with RDF stores (also

visually generating query examples in SPARQL) and a direct

interface for formulating SPARQL queries, when needed.

 In Figure 2, the interaction among the main tools is

depicted. The actions performed by the developers to create

their application are: i) search on the ServiceMap and

visualize the resulting data on the map; ii) save the searches

done and receive an e-mail including the API calls to be used

in the App to get the same data obtained by the ServiceMap;

iii) use the API calls to develop web or mobile Apps, as well

as to use the ADK to create new dynamic modules.

Figure 2 – ServiceMap Development tools

The ServiceMap [22], [25] architecture is grounded on the

Km4City KB than can be questioned through the Smart City

API or directly making SPARQL queries on it (see Figures 1

and 2). When the developers pose queries on the ServiceMap

it sends requests which are translated into SPARQL queries or

Smart City API calls (also converted in SPARQL and/or

federated queries). Resulting queries are posed to KB and

NoSQL stores. Then the results are processed to convert them

in HTML and/or JSON returning them to the ServiceMap

user. The ServiceMap has been developed by using JSP

application. In order to create interactive and enriched maps

JavaScript library Leaflet [21] has been adopted. Thanks to the

well-documented API and numerous plugins, Leaflet can build

a map usable and rich in detail, making use of maps released

by OpenStreetMap.

A. ServiceMap tool for Visual Generation of Calls

The ServiceMap allows developers to:

1. Search: Make a set of different searches on the data

collected in the Km4City KB visually (each info is geo-

localized and can be viewed in the map);

2. Save&standardAPI: Save the performed visual query to

receive via e-mail the Rest calls to the APIs to obtain the

same data [20], according to the Smart City API syntax

with all parameters explicated. The calls can be directly

used into web and mobile Apps, and can be used also to

learn how to query the Smart City API;

3. Save&QueryID_API: Save the performed visual query

to receive via e-mail a Rest call with a simplified syntax

referring to the so called QueryID_API only. This id

refers to a full Rest Call saved on the server. The

simplified syntax of Rest call with QueryID_API can be

used to avoid the usage of complex syntax and to allow

changing the query on server without redeploying the

application;

4. Save&EMBED: Save the experience/queries of the users

in visually recall smart city elements on the map, and thus

to give the possibility of embedding the view on a third

party web page;

5. Search&LOG: Access to the Linked Open Graph tool

(LOG) [24], to open a visual description of the KB

elements and their relationships, which is the Km4City

Semantic Model in a graphical modality.

http://www.disit.org/app

Moreover, the developers can also use a tool for to directly

pose SPARQL Queries on the Km4City KB, and verifying the

licensing level [23] http://log.disit.org/sparql_query_frontend/.

Developers’ Action 1: Search

ServiceMap allows the developers to make geographical

queries on the Km4City KB and provide them results on a

map, on the basis of: Street Graph from Tuscany region, Open

Data from Florence Municipality, traffic monitoring, geo and

weather forecast information from LAMMA, traffic sensors,

services, events, car park occupancy, timetable/routes/stops of

Public Transport Lines, gas stations in Italy, pollution

information (Air quality) from ARPAT, first aid status of

major hospitals, etc. Some of data are provided in a real time

modality, such as the occupancy of the car parks, the traffic

sensors, the events, the weather forecast in Tuscany, the first

air, pollution, etc.

Figure 3 - ServiceMap Web Interface.

The ServiceMap interface provides a number of search

capabilities such as: i) search geo-located elements (also

called Services) for municipality; ii) search Services for

proximity to a point on the map or around a reference Service;

iii) search Public Transport Routes and stops; iv) Search

Public Transport Line for proximity to a point on the map or

to a Service; v) Search Events in the period; vi) Search

Services and Events by Text, vii) Save a search made and

reloading a saved query by query-ID, see Figure 3. These

kinds of features are offered via two main menus. The menus

and thus the taxonomy of Service of Km4City are available in

both English and Italian language.

 Therefore, the Top Left Menu contains 4 tabs, each of them

provides a specific modality to make a search:

• Transport Public Lines (TPL): to select a TPL agency,

line and route, and view on map (both routes and stops).

• Tuscan Municipalities: to select local govern areas in

which the Services are searched. Once selected a local

govern, the corresponding weather forecast is

automatically shown in the lower left corner. In addition,

the user may perform a filtering on the basis of the

Service categories listed on the Top Right menu.

• Text search: to perform a search on the whole KB, by

using full text.

• Events: to search the events that take place in the area,

specifying the time interval of interest: day, week or

month.

In all cases, the query results appear on the map as a list of

events with their markers. And in all cases the user can: (i)

restrict the search to a delimited area choosing the center with

latitude and longitude as decimal degrees and the radius in

Km, (ii) limit the maximum number of results. For case (i) a

reference point in the map has to be chosen; thus, the

ServiceMap informs the user about the selected GPS

coordinates, the closest street addresses, and the closest other

structures located in the neighbouring. In most of the above

cases, the interface proposes a small disk icon in the dialog

boxes. This icon allows the user to request at the ServiceMap

to send an email with the examples in both JSON and HTML.

In the same context, when selected a point or a Service in the

map, it is also possible to select a second point or Service and

request for producing a call to Smart City API of routing.

Presently, this service is provided only for pedestrian

navigation in Florence downtown, providing the shortest path.

The Top Right Menu in ServiceMap provides two main Tabs:

1) Regular Services: This menu is composed of 20

checkboxes corresponding to the taxonomy Services as

described by Km4City ontology. It includes macro-categories

(e.g.: Cultural Activity, Tourism Service, Environment, etc.)

and a number of categories for each of them (e.g.: Museum,

Restaurant, Hotel, Pharmacy etc.). At the moment, there are

more than 530 categories dynamically loaded. The search for

proximity to a point on the map allows to choose the

maximum number of results desired in output (between the

values 10, 20, 50, 100, 200, 500 and No Limit) and the search

radius (between the values 100m, 200m, 500m, 1km, 2km,

5km, all the Visible Area in the Map, on Specific areas or

along a line). Searches on specific area/line allow performing

a query on recalling all the selected services located in

formalized shape (closed or lines). This feature exploits the

Smart City API which allows searching for specific Services:

(i) along a line (e.g., cycling path, a tram line, route to home);

(ii) into a specific are providing a shape data.

The additional functionalities on the same panel allows: to

clean the view, to ask for the histogram distribution of

Services in the selected area, and to ask to the email with the

Smart City APP Rest call exemplified.

2) Transversal Services: The modality of search is similar of

those proposed for Regular Services. In this case, the most

relevant categories are:

• Areas: which are Services endowed of a closed shape

(singly or multiple-connected), as Gardens, Controlled

Parking Zone, Green and Sports Areas whose shape be

highlighted on the map.

• Digital Location: which includes different type of services

that can contain various multimedia content such as jpeg

images, audio files or pdf attachments, multilingual

descriptions, etc.

• Happening now (Events): daily, weekly, monthly, etc.

• Path and Public Transport Lines, which are Services

presenting a path, such as: Tourist Trails, Cycle Paths or

Bus/Train/Tram/Ferry Routes.

• Sensors which are IOT Services such as: traffic flow

sensors, environmental sensors, bus-stops, smart benches,

smart lights, parking, etc.

http://log.disit.org/sparql_query_frontend/

• First Aid: main hospitals providing in real time the status

of occupancy of the emergency rooms triage.

• Bus/Tram/Train/Ferry stops: which are paths and bus

stops of each Service passing in a given area around a

point. This gives you an example of the API to search for

a bus to reach a given point in the city.

Developers’ Action 2/3: Save&standardAPI and

Save&QueryID_API:

Once the developers have searched and visualized data in the

ServiceMap, they can save their queries on server by clicking

on the save buttons (an icon disk located in each menu). After

this action a popup dialog appears, asking for (i) email

address, (ii) a reference title; and (iii) a description of which

service/s the user wants to save (e.g., Piazza Santa Croce, in

Figure 3). Thus the query is saved on server for a further reuse

and a set of examples are sent via email to the developer. The

examples received via email describe specific API REST calls

that can be used to invoke the Smart City API from Apps, to

obtain the data interest. The Smart City API Rest call provided

are in the format of:

• Standard API: read only links (providing information in

an HTML and/or JSON);

• Query_ID API: read and write links that are saved on

server side and can be used in the Applications. This

approach has two advantages for the developer which: (i)

avoids the usage of complex standard API in the code, (ii)

may change query associated with Query_ID on the

server by using the ServiceMap without the need of

rebuilding and redistributing the Web or Mobile App.

According to the latter case, the developer receives from the

two different Rest call: (read) to use the Query_ID API call in

the App; (write) to automatically open the Servicemap and

change the associated query. It is relevant to remark that in all

cases the data requested are dynamically updated at the

moment of the call, showing to the final users the updated

information.

Developers’ Action 5: Search&LOG:

In order to allow developers to learn/create formalizing

SPARQL queries for a particular problem that cannot be

solved using the provided Smart City APIs the developer

needs to understand the Km4City ontology and data available

in the RDF store. To this end, the ServiceMap allows

exploring the KB in the context of each Service identified on

the map by using the Linked Open Graph (LOG) tool [24].

Starting from a search result (e.g., a single service) it is

possible to explore the KB starting from this point allowing to

see the relations with other entities in the KB, eventually

hidden from the user interface for simplification. For example,

it is possible to understand how the Services are connected

with the road graph elements or how to access more complete

real time information about IOT sensors. The LOG allows to

visually navigating all the relations among the entities as

depicted in Figure 4, including those bringing to other

LOD/LD (linked open data, linked data) resources as dbPedia.

Figure 4 – Linked Open Graph

IV. APPLICATION DEVELOPMENT KIT, ADK

The main aim of the Application Developer Kit, ADK,

consists in making simple and fast the production of new

modules in complex Apps. This is possible thanks to the

ServiceMap development tool and to the proposed architecture

for the web and mobile Apps. The main requirements that

have drown the design of ADK have been the strong need of:

Modularity: to have a structure which allows the

modularization of functionalities in order to make the code

development for modules simpler, and allocated to several

distinct teams as one may have on distributed projects with

multipartner and/or in a smart city development with multiple

operators.

Dynamicity: to make possible the addition/update/ removal of

modules to the Apps at run time (when the Apps are installed

in the device of the final user) in order to (i) speed up the

deploy of the new functionality in the hands of the final users

(among them also special Modules for managing events, or

critical cases), (ii) maintain the attention of the App users with

special temporary games, incentives, trials, etc., and in App

commercial functionalities, if needed.

Personalization: to adapt the user experience (menu, user

interface, functionalities) on the basis of the users’ actions and

profile; also giving at the user the possibility of resetting and

changing the menu setting, functionality preferences, etc. See

for example, the customization obtained with Telegram Bot.

Alerting: to enable the App to receive alerts, notifications and

messages possibly when the App is in background and thus

off. So that to inform the user about critical situations in the

city and also for personal assistance, suggestions, etc. This is

feature that may have different possible implementation on

different platforms.

Multiplatform: to realize Apps that can be installed and

performed on more than one platform, providing a similar

level of experience, and avoiding substantial changes of the

code to maintain limited the development costs.

The proposed architecture of the Application Developer Kit,

ADK, and thus of the final App have been designed to enable

every developer to create his own module, that can be

dynamically loaded inside the application.

Modularity and Dynamicity
The modular structure of the ADK (see Figure 5) is used to

prevent the change of files inside the application with another

code or data, from new developers. New modules have to be

placed inside the modules folder of the ADK, and the ADK

has to be loaded at the proper time scripts and templates. New

data have to be also combined with data already present in the

basic version of the ADK (i.e., Labels and Alerts in Data

block). The modularity structure does not allow developers to

modify other parts of the ADK. Developers can use the

functionalities made available for the modules and submitted

from other scripts (i.e., take data from GPS position, visualize

services on the map and other functionalities offered by scripts

contained in Core block). As shown in Figure 5, the block

Modules contains those developed and integrated on Sii-

Mobility application concerning functionalities that offer data

in real time:

o Parking Searcher: to find closest and freest car parks in

the city, showing distance and number of free parks.

o Fuel Station Searcher: to find closest and cheapest Fuel

Stations showing the favourite fuel kind and price.

o TPL Searcher: to find the closer public transportations

stops and showing the next ride time, or the full list;

o First Aid Searcher: to find hospitals and showing the

emergency room (first aid) situation, the triage status;

o Pollution Searcher: to find the closest environmental and

pollution sensors and shows the last data values collected

by the sensor(s);

o Others such as: weather forecast, events in the city, civil

protection information alert, etc.

Each module is substantially a mini-application in HTML5. In

a certain sense, each of them exploits the Smart City API, the

registration of the user ID, the access to sensors of the device,

etc., and thus may receive information from the Sii-Mobility

servers (see Figure 1). The produced modules may be

dynamically loaded inside the official application or provided

into the App from the store. In the first case, every time the

App is executed, it looks for the availability of new modules

to load them from the server site, also updating the former

versions when needed. The module loader directly locates the

new and updated function and mini-apps on the menu, and

when needed new buttons are connected to the new feature

that will appear and in the desired place according to the

server manifest of the module.

Figure 5 – Web and Mobile Application developer kit.

Personalization and Profiling

Apps Users are profiled and their profile is communicated to

the server. Users’ profiles are presently kept totally

anonymous and classified as citizens, students, commuters or

tourists, according to user preferences. Thus, their interaction

with the interface is anonymously recorded, to know the most

sought services of the different profiles and modify the main

menu. This approach allows us to tune the service according to

the collective and personal user behaviour, with the aim of

improving the user experience providing personalized (i) main

menu arrangement of the functionalities according to the user

profile (the user also may change it to have precise

personalization), (ii) suggestions (the user may decide to ban

some of the suggestion or even a category), (iii) menu search

among categories (the user may decide to make further

selection). Therefore, the menus offered for each profile kind

is modified according to the statistics calculated on the

collected data, by defining the positions the most researched

categories, buttons, etc., and in some cases, putting off/on

some functionality. For example, the triage monitoring may be

of interest for citizens and operators and less for tourists, the

parking status is interesting for users using the private car and

less for those moving with the public busses or in bike, etc.

The priority on the creation of the menu profiles is given in

first place to the updated menu which can be found on the

server. If the server is unreachable, the last saved menu for

that specific profile is loaded; if the menu has not been saved,

the loaded menu is the menu released with the application

update, and so on.

Alerting and tracking

The city users need to be informed on what is going on the

city. On the other hand, most of the mobile platforms have

different approaches for providing asynchronous notifications

in push to the device when the App is not in foreground, is not

executed by the user. On this regard, Android allows

executing processes in background so that it can be used to

collect changes with a polling approach. On the other hand,

iOS provides a service called APN for central management of

notifications in push and does not allow executing processes in

background. A similar approach is also provided for Windows

Phone. In addition to the alerting, the movements of the device

should be also communicated to the server in order to get new

context based suggestions and alerting, such as: please take

care about the weather forecast in your area, alarms of civil

protection, environmental status, closer car park, etc. Some of

these innovative and smart features are produced as

suggestion, engagements from personal assistant, predictions

produced by the data analytics modules (e.g., parking, arrival

of busses, etc.), alerts (e.g., civil protections, changes in the

traffic, events). A new and additional feature of notification

can be obtained integrating Telegram, which has to be

installed into the App. In this case, the server identifying the

critical situation has to interact with Telegram server. This

allow to send notifications to Apple and WinPhone platforms.

Multiplatform

In order to satisfy the first requirement of multiplatform, the

ADK and the architecture have been based on Apache

Cordova framework. It allows realizing hybrid applications on

multiple platforms. The applications developed with Apache

Cordova, shell consists of user-interface implemented with

HTML, CSS and JavaScript, and of plugins which allow to

use the specific hardware functionalities from the different

platforms (i.e., battery-status, camera, device orientation)

(Platforms Plugins in Figure 5), through a JavaScript interface.

The Sii-Mobility App development has shown the powerful of

this framework that permit in a very short time (i.e., one day

or max one week) to develop and publish the application on

different platforms stores. Therefore, it is possible to have

almost the same code for all platforms. It is possible to start

from the ADK source code released as Affero GPL, available

on https://github.com/disit/siiMobilityAppKit, for all

developers that would like to realize new modules for Sii-

Mobility official applications on the basis of data available

through Smart City API Km4City and/or from other sources

and APIs that may be related to private data of the city

operators.

A. Openness of the Smart City API

ServiceMap and the Smart City API may be also invoked by

other kinds of Apps and not only by those adopting the

approach of developing modules for the main Apps. In this

case, the ADK can be used for taking inspiration only since

the license cannot accept to extract modules and create new

Apps.

V. EXPERIMENTAL RESULTS

The ServiceMap is an experimental platform since the 2015

providing always a growing number of functionalities and data

kinds. In this phase of the experimentation, a number of

developers are using the development platform of Sii-

Mobility. For the validation, in January 2017 an internal

hackathon with 8 groups (1-2 developer) of industrial partner

has been organized. They have been engaged on developing

the same module (namely the gasoline prices) producing it in a

quite similar shape as that published on the store, in about 3.5

hours of work, after attended a short training section of 2

hours (see http://www.sii-

mobility.org/index.php/eventi/mobile-app-workshop). This

demonstrated the effectiveness of the proposed approach. A

new round of hackathon is planned for April 2017 (see

Http://www.sii-mobility.org), open to external partners and

thus for modules and completely new apps inspired by the

approach.

 In Table I, the number of requests performed on

ServiceMap from Developers (excluding our developers and

users) is reported. Users are using the GUI and APIs to access

to the different features available for accessing the data

available on the KB. In particular, developers used the

ServiceMap GUI functionalities 6,375 times in the period

from Dec. 1st 2016 - Mar. 9th 2017 to perform queries and to

study the data available on the system. These developers have

created in this period of time 133 different queryIds that have

been used via API 1,633 times. However, the most used API

type is the REST API that provides a JSON data structure,

these kinds of APIs were used 676,204 times (95.95%). The

most advanced SPARQL API allowing querying directly to

the Km4City KB has been used only 19,296 times (2.74%).

Requests at the Smart City API for getting results in HTML,

typically used to Embed ServiceMap in other web pages, with

Km4City data, have been used in the same period of time for a

total of 1,202 times (0.17%).

TABLE I. NUMBER OF REQUESTS ON SMART CITY API AND

DEVELOPMENT TOOLS PERFORMED BETWEEN DEC 1ST
 2016 AND MAR 9TH

 2017

Request type #requests %
API (no queryId) 676,204 95.95%

SPARQL call 19,296 2.74%

ServiceMap GUI 6,375 0.9%

API via queryId 1,633 0.23%

API HTML 1,202 0.17%

 According to Table I, the classical Rest API style is the

mostly used. From a deeper analysis of the functionalities used

in the ServiceMap GUI it comes out that the most used

function is the information on a single Service (point of

interest) with 38%, and the second one is the location

information on a GPS position with 27% (returning the

address and geometries hitting the GPS position). The third

mostly used functionality is the search of Services by GPS

position with a 19%, while at the 8% the search by

municipality, and at 5% the text search. Other functionalities

are below the 1%. Regarding the saved queries, following the

Query ID approach of API and App, the 24% are queries to

search Services via GPS/service position while 10% to search

Services on a municipality and 35% are for looking for a

specific Service, while the 26% are to save a complex

configuration to be embedded in an html page. For SPARQL

API requests, 19,296 requests are coming from 82 different IP

addresses meaning that these queries are typically performed

on the server side (mainly from other servers and tools and not

from mobiles also detected from the User Agent analysis). The

Mobile Apps used the REST APIs in the 130,820 times over

the 676,204 requests covering the 19% of the requests from

1729 different users.

Figure 6 – Statistics on clicks of the main menu

 In Figure 6, a statistic on users' clicks on the buttons of

the main menu is presented. In the figure, the percentages of

clicks have been depicted in the buttons to see the spatial

distribution. Most of the selections are concentrated in the

button located on top left because the users search the mainly

functionality on this area (this is also due to the arranged

performed on the basis of an early analysis performed in mid

of 2016). Secondly, the clicks are focused on the central

buttons and on the alert button: on these buttons during the use

of the application are added badges/labels highlighting the

number of news the user may found accessing to that feature

(i.e., the number of events planned for that day, the number of

messages sent by the assistant, number of suggestions, etc.).

Then the notifications appearing on buttons provokes curiosity

about users who are inclined to click to see what shows them.

 In Figure 7, a statistic on the categories requested by users

is depicted. The most searched categories are those relating to

buttons that display directly to user the services sought

(buttons on the principal menu or buttons aside of the map,

https://github.com/disit/siiMobilityAppKit
http://www.sii-mobility.org/index.php/eventi/mobile-app-workshop
http://www.sii-mobility.org/index.php/eventi/mobile-app-workshop
http://www.sii-mobility.org/

when it is shown). Very popular is also the function “Around

You” that it is shown to the user in a popup over the GPS

markers and over manual position marker. Search for

categories, represented in the graph by the labels "Tourist

Menu" and "Citizen Menu" is not much used even though

allows the user a more targeted choice of services that should

be searched.

Figure 7 - Statistics on more researched categories

VI. CONCLUSIONS

The development of smart city App is a time consuming

activity and is becoming every day more dynamic and

frequent. Data and API are in most cases offered from classic

Open Data portals; while they are unsuitable for developing

smart Apps (lack of semantic aggregation and interoperability

of data, lack of data analytics support). Thus developers as:

SME, researchers, students, and operators, had to develop

Apps by studying data and complex APIs before becoming

productive. To cope with these problems, an innovative

development approach for smart city web and mobile Apps

has been designed and experimented in a real context. It

exploits the Km4City data aggregator and semantic model,

and includes: (i) tools for assisting developers for generating

Smart City API calls via visual query on a graphical user

interface; and (ii) open source Apps for shortening the

development of mobile App modules. The paper reported data

regarding the effectiveness of the time saved in the

development and the assessment of the user actions on the

mobile App and development tools. The results have been

assessed on the context of a large national project called Sii-

Mobility which involved several developers. The same

approach is presently adopted, used, and contributed by other

large projects as well, namely: RESOLUTE 2020 and

REPLICATE H2020. They contributed with new data and

detailed features, and some new functionality to the general

solution.

ACKNOWLEDGMENT

The authors would like to thanks the MIUR, to the University
of Florence and companies involved for co-founding of Sii-
Mobility Project. Km4City is an open technology of research
created by DISIT Lab.

REFERENCES

[1] Anthopoulos, Leonidas, and Panos Fitsilis. "Exploring

architectural and organizational features in smart cities."

Advanced Communication Technology (ICACT), 2014 16th Int.

Conference on. IEEE, 2014.

[2] Filipponi, L.; Vitaletti, A.; Landi, G.; Memeo, V.; Laura, G.;

Pucci, P., "Smart City: An Event Driven Architecture for

Monitoring Public Spaces with Heterogeneous Sensors," in

Sensor Technologies and Applications (SENSORCOMM), 2010,

vol., no., pp.281-286, 18-25 July 2010.

[3] Domingo, A.; Bellalta, B.; Palacin, M.; Oliver, M.; Almirall, E.,

"Public Open Sensor Data: Revolutionizing Smart Cities," in

Tech. and Society Magazine, IEEE , vol.32, no.4, pp.50-56,

2013.

[4] P. Bellini, M. Di Claudio, P. Nesi, N. Rauch, "Taxonomy and

Review of Big Data Solutions Navigation", as Chapter 2 in "Big

Data Computing", Ed. Rajendra Akerkar, Western Norway

Research Institute, Norway, Chapman and Hall/CRC press, ISBN

978-1-46-657837-1

[5] Chourabi, Hafedh, et al. "Understanding smart cities: An

integrative framework." System Science (HICSS), 2012 45th

Hawaii International Conference on. IEEE, 2012.

[6] OpenDataSoft: https://www.opendatasoft.com/

[7] ArcGIS OpenData: http://opendata.arcgis.com/

[8] SOCRATA: https://www.socrata.com/

[9] C. Badii, P. Bellini, D. Cenni, G. Martelli, P. Nesi, M. Paolucci,

"Km4City Smart City API: an integrated support for mobility

services", 2nd IEEE Int. Conf. on Smart Computing

(SMARTCOMP 2016), St. Louis, USA, 18-20 May 2016.

[10] CitySDK: http://www.citysdk.eu

[11] EPIC, European Platform for Intelligent Cities, http://www.epic-

cities.eu, ICT PSP (2011-2013)

[12] Transport.API, http://www.transportapi.com

[13] E015 digital ecosystem, http://www.e015.expo2015.org/

[14] IBM Institute for Business Value, “How Smart is your city?

Helping cities measure progress”, [online].

http://www.ibm.com/smarterplanet/global/files/uk__en_uk__citi

es__ibm_sp_pov_smartcity.pdf

[15] Alcatel-Lucent Market and Consumer Insight team, “Getting

Smart about Smart Cities Understanding the market opportunity

in the cities of tomorrow”, Oct. 2013

[16] Sii-Mobility APP Kit: APP module development

http://www.disit.org/6992

[17] P. Bellini, M. Benigni, R. Billero, P. Nesi and N. Rauch,

"Km4City Ontology Building vs Data Harvesting and Cleaning

for Smart-city Services", International Journal of Visual

Language and Computing, Elsevier, 2014.

[18] DATEX II:

http://www.datex2.eu/sites/www.datex2.eu/files/Datex_Brochure

_2011.pdf

[19] P. Bellini, I. Bruno, P. Nesi, N. Rauch, "Graph Databases

Methodology and Tool Supporting Index/Store Versioning",

publication on JVLC, Journal of Visual Languages and

Computing, Elsevier, 2015.

[20] Sii-Mobility Km4City: Smart City API Documentation

http://www.disit.org/6991

[21] “Leaflet API reference,”: http://leafletjs.com/reference.html .

[22] Servicemap development tool, http://servicemap.disit.org

[23] P. Bellini, L. Bertocci, F. Betti, P. Nesi, "Rights Enforcement and

Licensing Understanding for RDF Stores Aggregating Open and

Private Data Sets", 2nd IEEE Int. Smart Cities Conference (ISC2

2016), September 2016, Trento, Italy

[24] Linked Open Graph, http://log.disit.org/service/

[25] C. Badii, P. Bellini, D. Cenni, A. Difino, P. Nesi, M. Paolucci,

Analysis and Assessment of a Knowledge Based Smart City

Architecture Providing Service APIs, Future Generation

Computer Systems, Elsevier.

https://www.opendatasoft.com/
http://opendata.arcgis.com/
https://www.socrata.com/
http://www.citysdk.eu/
http://www.epic-cities.eu/
http://www.epic-cities.eu/
http://www.transportapi.com/
http://www.e015.expo2015.org/
http://www.ibm.com/smarterplanet/global/files/uk__en_uk__cities__ibm_sp_pov_smartcity.pdf
http://www.ibm.com/smarterplanet/global/files/uk__en_uk__cities__ibm_sp_pov_smartcity.pdf
http://www.disit.org/6992
http://www.datex2.eu/sites/www.datex2.eu/files/Datex_Brochure_2011.pdf
http://www.datex2.eu/sites/www.datex2.eu/files/Datex_Brochure_2011.pdf
http://www.disit.org/6991
http://leafletjs.com/reference.html
http://servicemap.disit.org/
http://log.disit.org/service/

