
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Photorealistic 3D City Modeling Framework for

Smart City Digital Twin

Lorenzo Adreani1, Carlo Colombo2, Marco Fanfani1,2, Paolo Nesi1, Gianni Pantaleo1, Riccardo Pisanu2
University of Florence, Florence, Italy, email: <name>.<surname>@unifi.it

1) DISIT lab, https://www.disit.org, https://www.snap4city.org

2) Computational Vision Group http://cvg.dsi.unifi.it/cvg/

Abstract— In the context of Smart Cities digital

transformation, the field of 3D city modelling has attracted a

growing interest for representing the city digital twin. This paper

presents a method for producing a 3D city model with

photorealistic rooftop textures extracted from aerial images, as

well as the integration of the 3D city model into an open-source

Smart City framework. The proposed solution provides a smart

visualization of 3D city entities integrated with a large variety of

Smart City data (coming, for instance, from IoT Devices which

generate time-series data, heatmaps, geometries and shapes

related to traffic flows, bus routes, cycling paths etc.). The

proposed method for rooftop detection and alignment follows a

deep learning approach based on U-Net architecture, and it has

been validated against a manually created ground-truth of 50

buildings scattered uniformly on the covered area. The solution is

implemented in the open-source Snap4City Smart City platform.

Keywords—3D City model, Photorealistic texture, digital twin,

Smart City applications.

I. INTRODUCTION

In smart city solutions, spatial data information may act as a
key driver in order to enhance the interoperability among all
these systems [1]. Aspects related to digital 3D city modelling
and digital twin have recently gained a growing interest, since
they allow to perform analyses, simulations, planning and
monitoring in several different domains and application areas,
thus improving decision-making processes for Smart Cities
stakeholders. Many approaches have been proposed in literature,
such as: CityGML, CityJSON, the combination of Building
Information Modeling (BIM) and Geographic Information
System (GIS) providing a City Information Modeling (CIM) [2].
CityGML also defines different levels of detail (LoD) for the
models. According to [3], there are five levels of detail: LoD0 is
represented by those models having only a 2D map with 3D
terrain; LoD1 presents buildings as simple boxes; LoD2 adds
rooftops details to LoD1 buildings; LoD3 presents also external
facades structure; LoD4 adds building interiors. LoD4 was
introduced in CityGML 2.0, but it was removed in the latest
version of CityGML 3.0. Generally, performances and
scalability of these systems are some challenging aspects, due to
the large amount of data to be processed. This impacts especially
when a higher level of detail is provided, for instance when
applying photorealistic textures. In these cases, the issue is
typically mitigated at the expense of a lower resolution of
textures.

In this paper, a 3D City Modeling Framework for Smart City
Digital Twin with photorealistic textures is presented. The main
contributions of this paper are the following: first, the production

of a full functional 3D map with LoD3 model support (providing
photorealistic rooftop textures), as well as the creation of a full
automatized algorithm to map all the buildings in a certain area,
creating a LoD2 building models from a LoD1 building type.
Second, the integration of the 3D map into a Smart City
framework (the open-source Snap4City platform) [4], in order
to provide a smart environment and applications for visualizing
city entities and related data (coming, for instance, from IoT
devices generating time-series data, heatmaps, geometries and
shapes related to traffic flows, bus routes, cycling paths etc.),
with the possibility to pick single city elements or buildings on
map, and inspect their data and attributes. Therefore, the
proposed solution is an open-source web-based tool for
producing a global digital twin integrating IoT and many other
kind of Smart City data, which has been designed to satisfy the
following requirements:

1) Production of a photorealistic 3D City model as an
interactive map: the map must support a full 3D
environment, implementing a 3D city model with
photorealistic textures for building rooftops. The map must
be interactive, allowing the user to click on single city
elements, device markers and buildings, and inspect all the
attached data and attributes, as detailed in requirement #2.

2) The map must support the retrieval and visualization of the
many different data sources collected in the Snap4City
Smart City platform (as described in Section IV), for
instance: IoT devices, Points of Interests (POI), heatmaps,
buildings information, geometries and polylines related to
bus routes, cycling paths, traffic flows etc. The IoT devices
typically have time series data attached to represent the
evolution of any aspect of the digital twin, e.g.:
temperature, pressure, speed, vibration, water level,
pollutant concentration, number of people visiting, etc.

3) LoD1, LoD2, LoD3 buildings support: All levels of LoD
detail must be implemented, except LoD4 buildings.

4) WMS support: the Web Map Service (WMS) protocol must
be integrated in the application.

5) Terrain Elevation: the implementation and management
of 3D Terrain via Digital Terrain Model (DTM) heatmap
must be supported.

6) Customizable Orthomap: The base orthomap can be
changed at runtime, selecting from a pool of available
orthomaps.

 The rest of the paper is organized as follows: in Section II, a
review of the state of the art is presented, describing the works

https://www.disit.org/
https://www.snap4city.org/
http://cvg.dsi.unifi.it/cvg/

in literature related to 3D city models and extraction and
registration of photorealistic textures; Section III describes the
proposed method for producing the photorealistic textured 3D
map; Section IV presents the integration of the proposed method
in the Snap4City platform; in Section V, a quantitative
validation of rooftop alignment is presented; finally, Section VI
is left for conclusions.

II. RELATED WORKS

In the past years a lot of research has been made in the field

of 3D city modelling, trying to recreate a realistic visualization

based on digital data. However, due to the typical size of a city,

handling all the data and their processing is a challenging task,

thus several challenges remain unresolved yet [5]. One critical

aspect of developing a high-fidelity 3D city model is to find the

correct format for the data that will be sent to the application.

The CityGML and CityJSON standards have been mainly

adopted in the past years: they define a format for the

representation of geometry and topology for 3D buildings,

using respectively XML and JSON. CityGML 3.0 integrates

also the BIM standard, alongside the GIS format, from

Industrial foundation class (IFC) [6]. Some integrations of

CityGML have been proposed in real cases, such as the city of

Helsinki, in which a LoD3 city model was implemented and

made publicly available [7]; however, the system do not

provide integration with IoT or other kind of city data. An

attempt of making a LoD3 3D city model was made by ETH

Zurich with the VarCity project [8]. However, the provided

semantic information is generally limited to a small number of

semantic classes.

Advancements in Light Detection And Ranging (LiDAR)

technology allow to model urban topography at spatial

resolution and granularity which were not achievable before the

advent of this technology [9]. In [10], a method to create a city

model from a point cloud generated by LiDAR technology is

presented. This approach has shown to reduce the time to

generate the model, but it cannot process unsymmetrical objects

and present some geometrical error.

 In order to enhance a 3D map with photorealistic textures

of the rooftops of the city buildings, two main aspects must be

considered: at first, rooftops have to be detected in remote

sensed data (i.e., airborne or satellite images) [11]; then, the

segmented patches must be carefully aligned with the top-view

of the 3D map. Indeed, even if geolocalization information is

available, errors are present due to uncertainties [12] and an

accurate multi-modal registration (e.g., between the RGB

images and the 3D structure) is required [13].

In the literature, several works have addressed these topics

using both standard and learning-based solutions. In [14],

handcrafted features and a hierarchical segmentation approach

have been used to identify the buildings in rural areas. SVMs

[15] and Random Forests [16] have also been used to address

this task. For example, in [17] the authors propose a three-steps

method based on color-based clustering, roof detection using an

SVM and a final false negative recovery. Slightly different, in

[18] a pair-wise exploitation of satellite images is used to

reconstruct a 3D model that could then be employed to identify

rooftop regions. However, such solutions not only have some

limitations when working on areas with dense buildings, but

they also require a successive registration on the 3D map.
More recently, deep learning based solutions appeared for

remote sensed image processing [19], [20]. More closely related
to our task, in [21] a Mask R-CNN [22] was used to detect
rooftops from aerial images. Differently, in [23], [24] a U-Net
architecture [25] has been preferred. Moreover, these last two

solutions provide not only rooftop segmentation but also the
registration on 3D data, making them particularly interesting for
our purposes.

III. PROPOSED METHOD

In this section, the steps required to produce the textured 3D
map to be deployed in the Snap4City platform will be described

(a)

(b)

(e)

(c)

(d)

Figure 1: Example of fusion of four tiles – (a) green, (b) yellow, (c) blue, and (d) red – into a unique image (e).

[4], [26]. Before presenting the operative pipeline, the used data
will be described in the following subsection.

A. Data

To build our textured model we used aerial orthographic

photos of the city of Florence, kindly provided by the “Sistema

Informativo Territoriale ed Ambientale” of Tuscany Region.

These images are tiles with a resolution of 8200x6200 pixels

with partial overlap and rough geolocalization in the EPSG

3003 (Monte Mario / Italy zone 1) coordinate system.

The 3D map was instead built by extruding the 2D shapes

of the buildings according to their elevation obtained from

GeoJSON provided by Florence municipality and Tuscany

Region Open Data. These data are expressed in the EPSG 4326

(WGS84) coordinate system.

B. Operative pipeline

1) Pre-processing. At first, the airborne images and the 2D

shapes used to create the 3D map must be converted into a

common coordinate reference system. We noticed that by

simply moving the orthographic photos from EPSG 3003

directly to EPSG 4326 produced evident alterations in the

Ground Sample Distance (GSD) 1 . To avoid this effect, we

instead selected a common coordinate system: the EPSG 3857

(WGS84 / Pseudo-Mercator). Both the images and the 2D

shapes were projected to it, since it correctly maintains the

GSD. Secondly, multiple image tiles describing the area

covered by the 3D map were fused into a single image using the

GDAL library2 (see Figure 1). Finally, we down-sampled the

input image: in this way we were able to obtain a notable speed-

up in the successive steps of the pipeline, without losing

accuracy in the detection and alignment of the rooftops.

2) Rooftop detection and alignment. To detect the rooftops

from the aerial images and align them with the 3D map, we used

1 The Ground Sample Distance is the distance between pixel centers measured

on the ground (in meters), i.e., how many meters are distant two adjacent pixels

in the image.

the method presented in [24], based on a double U-Net

architecture exploiting multi-resolution [27] and multi-task

learning [28]. The net takes in input an aerial RGB image and a

cadastral map of building (represented as a binary image) and

outputs a list of multi-polygons aligned to the input RGB

image.

In our setup, we used the 2D shapes described in the

GeoJSON data to obtain a cadastral map of the area of interest:

a binary cadastral map was computed by rasterizing the multi-

polygons – extracted from the 2D shapes – describing the

buildings contours. After this step a list of multi-polygons

aligned to the input RGB image was obtained. So we were able

to both segment rooftop textures and compute their registration,

w.r.t. the 3D map.

3) Image warping. Firstly, the aligned multi-polygons

were up-scaled to take into account the image down-sampling

done in step 1. Then, an affine transformation to warp the image

and register it w.r.t. the 3D map was computed. However, using

a single transformation for all the multi-polygons give rise to

local inaccuracies. For this reason, we computed a dedicated

transformation for each polygon and locally warped the image

so as to obtain a better registration. So, given the vertexes of an

aligned polygon 𝑉𝐴 and the vertexes of the corresponding 2D

shapes 𝑉𝑆 (consistent with the position of rooftops in the 3D

map), an affine transformation 𝑇 was estimated such as

 𝑉𝑆 = 𝑇𝑉𝐴 (1)

Then, according to the specific 𝑇, the aerial image was warped

and segmented on the area of the considered rooftop of the 3D

map. After repeating this process for all the multi-polygons, a

compete warped image (including only the rooftops) was

obtained.

2 https://gdal.org/

Figure 2: 3D Multi Data Map of Snap4City with textures.

https://gdal.org/

4) 3D Model texturing. The 3D map construction and

texturing were carried out with Blender. In particular, the

building 3D models were obtained by extrusion from the 2D

shapes exploiting their elevation data (included in the

GeoJSON) with the BlenderGIS library3. Then a UV-map of the

roof areas was created by retrieving the surfaces with normal

vectors perpendicular to the main plane and the warped aerial

image was used to texture the polygons described in the UV-

map, using the Python Blender API4. In order to achieve a more

pleasing final result. Finally, the obtained 3D map was exported

in glTF format (including 3D models, textures, and coordinates)

ready to be deployed in the Snap4City platform.

5) Deploy in Snap4City. The obtained model was finally

integrated in the 3D Multi Data Map of the Snap4City platform,
representing the digital twin of the city of Florence, powered by
the deck.gl framework5. To deploy the textured 3D map, the
SceneGraphLayer was used to import and show the glTF file.
Details of the integration in the Snap4City platform are
discussed in the next Section.

IV. USE CASE: INTEGRATION IN SNAP4CITY

Snap4City is an open-source platform developed at DISIT
Lab, University of Florence (https://www.snap4city.org/) [26],
[29], [30]. The platform manages heterogeneous data sources,
such as: IoT devices (city sensors and actuators, as well as
private devices, supporting a large variety of brokers and
protocols), open data, external services. For each different kind
of data, static attributes (such as geographical information and
other metadata) and also real-time data (when available) are
collected. Device data are semantically indexed in a RDF
Knowledge Base, thus they can be retrieved by dedicated APIs
and exploited by Data Analytics processes and IoT applications
to perform analyses, simulations, forecasts etc. This allows users
to produce new knowledge on data, which can be shown on user
interface through Dashboards and a wide range of widgets
(showing data both in pull and push modalities). The purpose of

3 https://github.com/domlysz/BlenderGIS
4 https://docs.blender.org/api/current/

integrating the photorealistic 3D city model obtained with the
method described in Section III into the Snap4City platform is
to provide a Multi-Data map which can allow the visualization
of an interactive 3D environment of the city, with the possibility
of inspecting the different kinds of entities and related data, such
as: IoT devices, Points of Interests (POI), heatmaps, geometries
related to bus routes, cycle paths, traffic flows, etc. In this way,
the Snap4City platform allows to exploit a complete open-
source framework that can collect, process, and manage all the
data needed to obtain a high-fidelity Smart City digital twin.

In order to integrate the 3D map in the Snap4City platform,
the deck.gl open-source library has been used. By exploiting the
multi-layer structure of deck.gl, we can implement a layer for
every type of data supported by the platform. All layers can be
viewed and removed dynamically by user choice. An example
of the resulting 3D map is shown in Figure 2: the 3D map can
be instantiated by users as a customizable widget in their own
dashboards. Figure 2 represents the 3D city model with the
addition of textures obtained using the method described in
Section III.

Regarding the implementation in deck.gl, first an IconLayer

was implemented to represent all the IoT devices managed by

the platform. IoT devices are ingested and stored in a semantic

Knowledge Base, and they are classified by semantic

categories. Therefore, a pool with different icons for each type

of device category is used to represent device markers on map.

The user can access all information given by a specific sensor

and city element by simply clicking on the device marker; in

this way, a popup is shown presenting static attributes and,

when available, real-time and historical data can be selected and

viewed on dedicated time-trend and single-content widgets (as

the one shown below the map in Figure 2). Additional layers,

based on the deck.gl PathLayer, have been also implemented to

show different type of geometries like cycling paths, traffic

flows, bus routes etc.

5 https://deck.gl/

Figure 3: IoU scores for each of the 50 considered builidings. In blue the scores of the input (non-aligned) multi-polygons, in red the results after the alignment.
As can be seen, IoU increase for all the buildings on the aligned multi-polygons.

https://www.snap4city.org/
https://github.com/domlysz/BlenderGIS
https://docs.blender.org/api/current/
https://deck.gl/

In order to implement all LoD types of buildings, we

support different data formats to better optimize loading time in

regard of what type of LoD are requested by the user. For LoD1

type, data is stored in a GeoJSON file and loaded through a

GeoJSON layer. This layer simply extrudes the base polygon to

a given height (in meters). LoD2 types are implemented via the

SimpleMashLayer that support the OBJ file formats, which can

be shown with or without texture. Finally, to implement LoD3

type building the deck.gl SceneGraphLayer has been used,

which can achieve impressive visualization without impacting

too much on the application performances. This also supports

two different file formats: glTF and GLB, which include texture

for the building by default.

The platform also supports the visualization of heatmaps,

which are essentials to provide a fast look for large amounts of

data. To implement heatmap visualization in deck.gl, we used

a composite layer that automatically retrieves heatmaps from a

dedicated geo-server (through several formats, including

WMS) and displays it as an image. Heatmaps can be static or

animated; static heatmaps are viewed as single PNG images,

while animated ones are sent by the geo-server in GIF format,

and they are later divided in multiple images and rendered

sequentially with a customizable delay time.
In addition, the elevation of terrain has been also modeled as

a heatmap. In this case, the elevation mapping of a certain region
has been used to elevate the base map, in order to have a 3D
visualization of terrain. A TerrainLayer has been implemented
for this purpose, combining the base orthomap with DTM data:
the orthomap is exploited to get the ground texture, while the
DTM is used for the elevation model. The result is a 3D
representation of terrain with texture that better represent the
territory.

V. VALIDATION AND DISCUSSION

To obtain a quantitative validation of the rooftop alignment

results on our data, we manually created a set of ground-truth

multi-polygon for 50 buildings scattered uniformly on the

covered area. Then we evaluate the Intersection over Union

(IoU) between the ground-truth and the input (non-aligned) and

aligned multi-polygons.

 In Figure 3 a bar plot is reported showing the IoU score

obtained for each considered building. As can be seen, for all

the test cases, the IoU increases after the alignment, confirming

the effectiveness of the used approach. In average we obtain an

IoU score of 0.7370 for the input multi-polygons, and 0.8848

after the alignment, with an increase of almost 15%.

 However, some failures are also present, and in Figure 4 we

reported the most evident cases. Sometimes the input multi-

polygons were far from the corresponding rooftops, and due to

the density of buildings in our data, the registration failed

attaching an edge of the multi-polygon on the adjacent rooftop

(see Figure 4a). The alignment cannot work also in the case of

occlusion (Figure 4b) or demolished buildings (Figure 4c).

Finally, if the input multi-polygon does not cover all the rooftop

(due to introduction of new structure), the alignment is not able

to stretch the multi-polygon effectively (see Figure 4d).

VI. CONCLUSIONS

 In this paper, a system for implementing a 3D city model
with photorealistic texture integrated into a Smart City
framework has been presented. The proposed solution follows a
deep learning approach based on U-Net to detect the rooftops
from aerial images and align them with the 3D map buildings,

(a) (b) (c)

(d)
Figure 4 - Example of failures. In red the input multi-polygons, in green the aligned ones. In (a) an edge of the multi-polygon is erroneously attached to the

adjacent building. In (b) some trees occlude the view of the rooftop, while in (c) the building was demolished. Finally, in (d) the input multi-polygon does not

include a new structure (on the bottom-right part of the building) and the alignment fails consequently.

which are obtained by extrusion from GeoJSON data. The
solution is implemented in the open-source Snap4City platform
as a multi-layer 3D map, which can be used by users as a widget
on dashboards to visualize a full 3D city environment and a large
variety of data, including IoT devices (city sensors and
actuators, as well as private devices), POI, heatmaps, geometries
and polylines related to cycling paths, bus routes, traffic flow
etc. Specifically, users have the possibility to pick on map the
single city elements and device markers and inspect their data
and attributes. In this way, the proposed solution aims at
providing an easy and smart navigation of the global digital twin
of the city and the related data. The method employed for
rooftop detection and alignment was validated against a set of
ground-truth multi-polygon for 50 buildings, composed by
uniformly scattered aerial images of the metropolitan area of
Florence, achieving an IoU score of 0.7370 for the input multi-
polygons, and 0.8848 after the alignment. As a future work, an
automatic procedure is going to be developed, in order to apply
photorealistic texture also to building facades.

ACKNOWLEDGMENT

Authors would like to thank the HeritData Interreg project.
Snap4City (https://www.snap4city.org) is an open technology
and research by DISIT Lab, University of Florence, Italy..

REFERENCES

[1] K. Chaturvedi, A. Matheus, S. H. Nguyen and T. H. Kolbe, “Securing
Spatial Data Infrastructures for Distributed Smart City applications and
services,” Future Generation Computing Systems, vol. 101, pp. 723-736,
2019.

[2] N. Lafioune and M. St-Jacque, “Towards the creation of a searchable 3D
smart city model,” Innovation & Management Review, vol. 17(3), pp.
285-305, 2020.

[3] G. Gröger and L. Plümer, “CityGML Interoperable semantic 3D city
models,” ISPRS Journal of Photogrammetry and Remote Sensing, pp. 16-
21, 2012.

[4] Nesi, Paolo, et al. "An integrated smart city platform." Semanitic
Keyword-based Search on Structured Data Sources. Springer, Cham,
2017.

[5] E. Shahat, C. T. Hyun and C. Yeom, “City Digital Twin Potentials: A
Review and Research Agenda” MDPI, pp. 3, 2021.

[6] D. Jovanovic, S. Milovanov, I. Ruskovski, M. Govedarica, D. Sladic , A.
Radulovic, and V. Pajic, “Building Virtual 3D City Model for Smart
Cities Applications: A Case Study on Campus Area of the University of
Novi Sad,” ISPRS International Journal of Geo-Information, pp. 16-21,
2020.

[7] Helsinki 3D city model. Available online: https://kartta.hel.fi/3d/#/

[8] ETH Zurich VarCity project. Available online:
http://www.varcity.ethz.ch/

[9] Bonczak, B.; Kontokosta, C.E. «Large-scale parameterization of 3D
building morphology in complex urban landscapes using aerial LiDAR
and city administrative data.» Comput. Environ. Urban Syst. pp. 73, pp.
126–142, 2019.

[10] F. Xue, W. Lu, Z. Chen and C. J. Webster, “From LiDAR point cloud
towards digital twin city: Clustering city objects based on Gestalt
principles,” ISPRS J. Photogramm. Remote Sens. pp. 167, pp. 418–431,
2020.

[11] G. Cheng and J. Han, “A survey on object detection in optical remote
sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 117, pp. 11-28, 2016.

[12] J. A. Thompson, J. C. Bell and C. A. Butler, “Digital elevation model
resolution: effects on terrain attribute calculation and quantitative soil-
landscape modeling,” Geoderma, vol. 100, pp. 67-89, 2001.

[13] Y. Ye, J. Shan, L. Bruzzone and L. Shen, “Robust Registration of
Multimodal Remote Sensing Images Based on Structural Similarity,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 55, pp. 2941-
2958, 2017.

[14] M. Izadi and P. Saeedi, “Automatic Building Detection in Aerial Images
Using a Hierarchical Feature Based Image Segmentation,” in 2010 20th
International Conference on Pattern Recognition, 2010.

[15] G. Mountrakis, J. Im and C. Ogole, “Support vector machines in remote
sensing: A review,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 66, pp. 247-259, 2011.

[16] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of
applications and future directions,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 114, pp. 24-31, 2016.

[17] H. Baluyan, B. Joshi, A. Hinai and W. Woon, “Novel Approach for
Rooftop Detection Using Support Vector Machine,” ISRN Machine
Vision, vol. 2013, p. 11, December 2013.

[18] M. Bosch, Z. Kurtz, S. Hagstrom and M. Brown, “A multiple view stereo
benchmark for satellite imagery,” in 2016 IEEE Applied Imagery Pattern
Recognition Workshop (AIPR), 2016.

[19] Y. Zhong, A. Ma, Y. soon Ong, Z. Zhu and L. Zhang, “Computational
intelligence in optical remote sensing image processing,” Applied Soft
Computing, vol. 64, pp. 75-93, 2018.

[20] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin and B. A. Johnson, “Deep learning
in remote sensing applications: A meta-analysis and review,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 152, pp. 166-177,
2019.

[21] M. Chen and J. Li, “Deep convolutional neural network application on
rooftop detection for aerial image,” ArXiv, vol. abs/1910.13509, 2019.

[22] K. He, G. Gkioxari, P. Dollar and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[23] R. Castello, A. Walch, R. Attias, R. Cadei, S. Jiang and J.-L. Scartezzini,
“Quantification of the suitable rooftop area for solar panel installation
from overhead imagery using Convolutional Neural Networks,” Journal
of Physics: Conference Series, vol. 2042, p. 012002, November 2021.

[24] N. Girard, G. Charpiat and Y. Tarabalka, «Aligning and Updating
Cadaster Maps with Aerial Images by Multi-task, Multi-resolution Deep
Learning,» in ACCV, 2018.

[25] O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional Networks
for Biomedical Image Segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, Cham, 2015.

[26] P. Bellini, F. Bugli, P. Nesi, G. Pantaleo, M. Paolucci, I. Zaza, "Data Flow
Management and Visual Analytic for Big Data Smart City/IOT", 19th
IEEE Int. Conf. on Scalable Computing and Communication, IEEE
SCALCOM 2019, Leicester, UK

[27] A. Zampieri, G. Charpiat and Y. Tarabalka, “Coarse to fine non-rigid
registration: a chain of scale-specific neural networks for multimodal
image alignment with application to remote sensing,” ArXiv, vol.
abs/1802.09816, 2018.

[28] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural
Networks,” ArXiv, vol. abs/1706.05098, 2017.

[29] E. Bellini, P. Bellini, D. Cenni, P. Nesi, G. Pantaleo, I. Paoli, M. Paolucci,
"An IoE and Big Multimedia Data approach for Urban Transport System
resilience management in Smart City", Sensors, MDPI,
2021, https://www.mdpi.com/1424-8220/21/2/435/pdf

[30] C. Badii, P. Bellini, A. Difino, P. Nesi, "Sii-Mobility: an IOT/IOE
architecture to enhance smart city services of mobility and
transportation", Sensors, MDPI,
2019. https://doi.org/10.3390/s19010001 https://www.mdpi.com/1424-
8220/19/1/1/pdf

https://kartta.hel.fi/3d/#/
http://www.varcity.ethz.ch/
https://www.mdpi.com/1424-8220/21/2/435/pdf
https://doi.org/10.3390/s19010001
https://www.mdpi.com/1424-8220/19/1/1/pdf
https://www.mdpi.com/1424-8220/19/1/1/pdf

