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Abstract— In the context of Smart Cities digital 

transformation, the field of 3D city modelling has attracted a 

growing interest for representing the city digital twin. This paper 

presents a method for producing a 3D city model with 

photorealistic rooftop textures extracted from aerial images, as 

well as the integration of the 3D city model into an open-source 

Smart City framework. The proposed solution provides a smart 

visualization of 3D city entities integrated with a large variety of 

Smart City data (coming, for instance, from IoT Devices which 

generate time-series data, heatmaps, geometries and shapes 

related to traffic flows, bus routes, cycling paths etc.). The 

proposed method for rooftop detection and alignment follows a 

deep learning approach based on U-Net architecture, and it has 

been validated against a manually created ground-truth of 50 

buildings scattered uniformly on the covered area. The solution is 

implemented in the open-source Snap4City Smart City platform. 

Keywords—3D City model, Photorealistic texture, digital twin, 

Smart City applications. 

I. INTRODUCTION 

In smart city solutions, spatial data information may act as a 
key driver in order to enhance the interoperability among all 
these systems [1]. Aspects related to digital 3D city modelling 
and digital twin have recently gained a growing interest, since 
they allow to perform analyses, simulations, planning and 
monitoring in several different domains and application areas, 
thus improving decision-making processes for Smart Cities 
stakeholders. Many approaches have been proposed in literature, 
such as: CityGML, CityJSON, the combination of Building 
Information Modeling (BIM) and Geographic Information 
System (GIS) providing a City Information Modeling (CIM) [2]. 
CityGML also defines different levels of detail (LoD) for the 
models. According to [3], there are five levels of detail: LoD0 is 
represented by those models having only a 2D map with 3D 
terrain; LoD1 presents buildings as simple boxes; LoD2 adds 
rooftops details to LoD1 buildings; LoD3 presents also external 
facades structure; LoD4 adds building interiors. LoD4 was 
introduced in CityGML 2.0, but it was removed in the latest 
version of CityGML 3.0. Generally, performances and 
scalability of these systems are some challenging aspects, due to 
the large amount of data to be processed. This impacts especially 
when a higher level of detail is provided, for instance when 
applying photorealistic textures. In these cases, the issue is 
typically mitigated at the expense of a lower resolution of 
textures. 

In this paper, a 3D City Modeling Framework for Smart City 
Digital Twin with photorealistic textures is presented. The main 
contributions of this paper are the following: first, the production 

of a full functional 3D map with LoD3 model support (providing 
photorealistic rooftop textures), as well as the creation of a full 
automatized algorithm to map all the buildings in a certain area, 
creating a LoD2 building models from a LoD1 building type. 
Second, the integration of the 3D map into a Smart City 
framework (the open-source Snap4City platform) [4], in order 
to provide a smart environment and applications for visualizing 
city entities and related data (coming, for instance, from IoT 
devices generating time-series data, heatmaps, geometries and 
shapes related to traffic flows, bus routes, cycling paths etc.), 
with the possibility to pick single city elements or buildings on 
map, and inspect their data and attributes. Therefore, the 
proposed solution is an open-source web-based tool for 
producing a global digital twin integrating IoT and many other 
kind of Smart City data, which has been designed to satisfy the 
following requirements: 

1) Production of a photorealistic 3D City model as an 
interactive map: the map must support a full 3D 
environment, implementing a 3D city model with 
photorealistic textures for building rooftops. The map must 
be interactive, allowing the user to click on single city 
elements, device markers and buildings, and inspect all the 
attached data and attributes, as detailed in requirement #2. 

2) The map must support the retrieval and visualization of the 
many different data sources collected in the Snap4City 
Smart City platform (as described in Section IV), for 
instance: IoT devices, Points of Interests (POI), heatmaps, 
buildings information, geometries and polylines related to 
bus routes, cycling paths, traffic flows etc. The IoT devices 
typically have time series data attached to represent the 
evolution of any aspect of the digital twin, e.g.: 
temperature, pressure, speed, vibration, water level, 
pollutant concentration, number of people visiting, etc. 

3) LoD1, LoD2, LoD3 buildings support: All levels of LoD 
detail must be implemented, except LoD4 buildings. 

4) WMS support: the Web Map Service (WMS) protocol must 
be integrated in the application. 

5)  Terrain Elevation: the implementation and management 
of 3D Terrain via Digital Terrain Model (DTM) heatmap 
must be supported. 

6)  Customizable Orthomap: The base orthomap can be 
changed at runtime, selecting from a pool of available 
orthomaps. 

 The rest of the paper is organized as follows: in Section II, a 
review of the state of the art is presented, describing the works  
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in literature related to 3D city models and extraction and 
registration of photorealistic textures; Section III describes the 
proposed method for producing the photorealistic textured 3D 
map; Section IV presents the integration of the proposed method 
in the Snap4City platform; in Section V, a quantitative 
validation of rooftop alignment is presented; finally, Section VI 
is left for conclusions. 

II. RELATED WORKS 

In the past years a lot of research has been made in the field 

of 3D city modelling, trying to recreate a realistic visualization  

based on digital data. However, due to the typical size of a city, 

handling all the data and their processing is a challenging task, 

thus several challenges remain unresolved yet [5]. One critical 

aspect of developing a high-fidelity 3D city model is to find the 

correct format for the data that will be sent to the application. 

The CityGML and CityJSON standards have been mainly 

adopted in the past years: they define a format for the 

representation of geometry and topology for 3D buildings, 

using respectively XML and JSON.  CityGML 3.0 integrates 

also the BIM standard, alongside the GIS format, from 

Industrial foundation class (IFC) [6]. Some integrations of 

CityGML have been proposed in real cases, such as the city of 

Helsinki, in which a LoD3 city model was implemented and 

made publicly available [7]; however, the system do not 

provide integration with IoT or other kind of city data. An 

attempt of making a LoD3 3D city model was made by ETH 

Zurich with the VarCity project [8]. However, the provided 

semantic information is generally limited to a small number of 

semantic classes. 

Advancements in Light Detection And Ranging (LiDAR) 

technology allow to model urban topography at spatial 

resolution and granularity which were not achievable before the 

advent of this technology [9]. In [10], a method to create a city 

model from a point cloud generated by LiDAR technology is 

presented. This approach has shown to reduce the time to 

generate the model, but it cannot process unsymmetrical objects 

and present some geometrical error. 

 In order to enhance a 3D map with photorealistic textures 

of the rooftops of the city buildings, two main aspects must be 

considered: at first, rooftops have to be detected in remote 

sensed data (i.e., airborne or satellite images) [11]; then, the 

segmented patches must be carefully aligned with the top-view 

of the 3D map. Indeed, even if geolocalization information is 

available, errors are present due to uncertainties [12] and an 

accurate multi-modal registration (e.g., between the RGB 

images and the 3D structure) is required [13]. 

In the literature, several works have addressed these topics 

using both standard and learning-based solutions. In [14], 

handcrafted features and a hierarchical segmentation approach 

have been used to identify the buildings in rural areas. SVMs 

[15] and Random Forests [16] have also been used to address 

this task. For example, in [17] the authors propose a three-steps 

method based on color-based clustering, roof detection using an 

SVM and a final false negative recovery. Slightly different, in 

[18] a pair-wise exploitation of satellite images is used to 

reconstruct a 3D model that could then be employed to identify 

rooftop regions. However, such solutions not only have some 

limitations when working on areas with dense buildings, but 

they also require a successive registration on the 3D map.  
More recently, deep learning based solutions appeared for 

remote sensed image processing [19], [20]. More closely related 
to our task, in [21] a Mask R-CNN [22] was used to detect 
rooftops from aerial images. Differently, in [23], [24] a U-Net 
architecture [25] has been preferred. Moreover, these last two  

solutions provide not only rooftop segmentation but also the 
registration on 3D data, making them particularly interesting for 
our purposes. 

III.  PROPOSED METHOD 

In this section, the steps required to produce the textured 3D 
map to be deployed in the Snap4City platform will be described 
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Figure 1:  Example of fusion of four tiles – (a) green, (b) yellow, (c) blue, and (d) red – into a unique image (e). 



[4], [26]. Before presenting the operative pipeline, the used data 
will be described in the following subsection. 

A. Data 

To build our textured model we used aerial orthographic 

photos of the city of Florence, kindly provided by the “Sistema 

Informativo Territoriale ed Ambientale” of Tuscany Region. 

These images are tiles with a resolution of 8200x6200 pixels 

with partial overlap and rough geolocalization in the EPSG 

3003 (Monte Mario / Italy zone 1) coordinate system.  

The 3D map was instead built by extruding the 2D shapes 

of the buildings according to their elevation obtained from  

GeoJSON provided by Florence municipality and Tuscany 

Region Open Data. These data are expressed in the EPSG 4326 

(WGS84) coordinate system. 

B. Operative pipeline 

1) Pre-processing.  At first, the airborne images and the 2D 

shapes used to create the 3D map must be converted into a 

common coordinate reference system. We noticed that by 

simply moving the orthographic photos from EPSG 3003 

directly to EPSG 4326 produced evident alterations in the 

Ground Sample Distance (GSD) 1 . To avoid this effect, we 

instead selected a common coordinate system: the EPSG 3857 

(WGS84 / Pseudo-Mercator). Both the images and the 2D 

shapes were projected to it, since it correctly maintains the 

GSD. Secondly, multiple image tiles describing the area 

covered by the 3D map were fused into a single image using the 

GDAL library2 (see Figure 1). Finally, we down-sampled the 

input image: in this way we were able to obtain a notable speed-

up in the successive steps of the pipeline, without losing 

accuracy in the detection and alignment of the rooftops. 
 

2) Rooftop detection and alignment. To detect the rooftops 

from the aerial images and align them with the 3D map, we used 

 
1 The Ground Sample Distance is the distance between pixel centers measured 

on the ground (in meters), i.e., how many meters are distant two adjacent pixels 

in the image. 

the method presented in [24], based on a double U-Net 

architecture exploiting multi-resolution [27] and multi-task 

learning [28]. The net takes in input an aerial RGB image and a 

cadastral map of building (represented as a binary image) and 

outputs a list of multi-polygons aligned to the input RGB 

image. 

In our setup, we used the 2D shapes described in the 

GeoJSON data to obtain a cadastral map of the area of interest: 

a binary cadastral map was computed by rasterizing the multi-

polygons – extracted from the 2D shapes – describing the 

buildings contours. After this step a list of multi-polygons 

aligned to the input RGB image was obtained. So we were able 

to both segment rooftop textures and compute their registration, 

w.r.t. the 3D map.  

 

3) Image warping.  Firstly, the aligned multi-polygons 

were up-scaled to take into account the image down-sampling 

done in step 1. Then, an affine transformation to warp the image 

and register it w.r.t. the 3D map was computed. However, using 

a single transformation for all the multi-polygons give rise to 

local inaccuracies. For this reason, we computed a dedicated 

transformation for each polygon and locally warped the image 

so as to obtain a better registration. So, given the vertexes of an 

aligned polygon 𝑉𝐴 and the vertexes of the corresponding 2D 

shapes 𝑉𝑆  (consistent with the position of rooftops in the 3D 

map), an affine transformation 𝑇 was estimated such as 

 

 𝑉𝑆 = 𝑇𝑉𝐴                        (1) 

 

Then, according to the specific 𝑇, the aerial image was warped 

and segmented on the area of the considered rooftop of the 3D 

map. After repeating this process for all the multi-polygons, a 

compete warped image (including only the rooftops) was 

obtained. 

 

2 https://gdal.org/  

 
Figure 2: 3D Multi Data Map of Snap4City with textures. 
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4) 3D Model texturing. The 3D map construction and 

texturing were carried out with Blender. In particular, the 

building 3D models were obtained by extrusion from the 2D 

shapes exploiting their elevation data (included in the 

GeoJSON) with the BlenderGIS library3. Then a UV-map of the 

roof areas was created by retrieving the surfaces with normal 

vectors perpendicular to the main plane and the warped aerial 

image was used to texture the polygons described in the UV-

map, using the Python Blender API4. In order to achieve a more 

pleasing final result. Finally, the obtained 3D map was exported 

in glTF format (including 3D models, textures, and coordinates) 

ready to be deployed in the Snap4City platform. 

 
5) Deploy in Snap4City. The obtained model was finally 

integrated in the 3D Multi Data Map of the Snap4City platform, 
representing the digital twin of the city of Florence, powered by 
the deck.gl framework5. To deploy the textured 3D map, the 
SceneGraphLayer was used to import and show the glTF file. 
Details of the integration in the Snap4City platform are 
discussed in the next Section. 

IV. USE CASE: INTEGRATION IN SNAP4CITY 

Snap4City is an open-source platform developed at DISIT 
Lab, University of Florence (https://www.snap4city.org/) [26], 
[29], [30]. The platform manages heterogeneous data sources, 
such as: IoT devices (city sensors and actuators, as well as 
private devices, supporting a large variety of brokers and 
protocols), open data, external services. For each different kind 
of data, static attributes (such as geographical information and 
other metadata) and also real-time data (when available) are 
collected. Device data are semantically indexed in a RDF 
Knowledge Base, thus they can be retrieved by dedicated APIs 
and exploited by Data Analytics processes and IoT applications 
to perform analyses, simulations, forecasts etc. This allows users 
to produce new knowledge on data, which can be shown on user 
interface through Dashboards and a wide range of widgets 
(showing data both in pull and push modalities). The purpose of 

 
3 https://github.com/domlysz/BlenderGIS  
4 https://docs.blender.org/api/current/  

integrating the photorealistic 3D city model obtained with the 
method described in Section III into the Snap4City platform is 
to provide a Multi-Data map which can allow the visualization 
of an interactive 3D environment of the city, with the possibility 
of inspecting the different kinds of entities and related data, such 
as: IoT devices, Points of Interests (POI), heatmaps, geometries 
related to bus routes, cycle paths, traffic flows, etc. In this way, 
the Snap4City platform allows to exploit a complete open-
source framework that can collect, process, and manage all the 
data needed to obtain a high-fidelity Smart City digital twin.  

In order to integrate the 3D map in the Snap4City platform, 
the deck.gl open-source library has been used. By exploiting the 
multi-layer structure of deck.gl, we can implement a layer for 
every type of data supported by the platform. All layers can be 
viewed and removed dynamically by user choice. An example 
of the resulting 3D map is shown in Figure 2: the 3D map can 
be instantiated by users as a customizable widget in their own 
dashboards. Figure 2 represents the 3D city model with the 
addition of textures obtained using the method described in 
Section III. 

Regarding the implementation in deck.gl, first an IconLayer 

was implemented to represent all the IoT devices managed by 

the platform. IoT devices are ingested and stored in a semantic 

Knowledge Base, and they are classified by semantic 

categories. Therefore, a pool with different icons for each type 

of device category is used to represent device markers on map. 

The user can access all information given by a specific sensor  

and city element by simply clicking on the device marker; in 

this way, a popup is shown presenting static attributes and, 

when available, real-time and historical data can be selected and 

viewed on dedicated time-trend and single-content widgets (as 

the one shown below the map in Figure 2). Additional layers, 

based on the deck.gl PathLayer, have been also implemented to 

show different type of geometries like cycling paths, traffic 

flows, bus routes etc. 

5 https://deck.gl/  

 
Figure 3: IoU scores for each of the 50 considered builidings. In blue the scores of the input (non-aligned) multi-polygons, in red the results after the alignment.  
As can be seen, IoU increase for all the buildings on the aligned multi-polygons. 
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In order to implement all LoD types of buildings, we 

support different data formats to better optimize loading time in 

regard of what type of LoD are requested by the user. For LoD1  

type, data is stored in a GeoJSON file and loaded through a 

GeoJSON layer. This layer simply extrudes the base polygon to 

a given height (in meters). LoD2 types are implemented via the 

SimpleMashLayer that support the OBJ file formats, which can 

be shown with or without texture. Finally, to implement LoD3 

type building the deck.gl SceneGraphLayer has been used, 

which can achieve impressive visualization without impacting 

too much on the application performances. This also supports 

two different file formats: glTF and GLB, which include texture 

for the building by default.  

The platform also supports the visualization of heatmaps, 

which are essentials to provide a fast look for large amounts of 

data. To implement heatmap visualization in deck.gl, we used 

a composite layer that automatically retrieves heatmaps from a 

dedicated geo-server (through several formats, including 

WMS) and displays it as an image. Heatmaps can be static or 

animated; static heatmaps are viewed as single PNG images, 

while animated ones are sent by the geo-server in GIF format, 

and they are later divided in multiple images and rendered 

sequentially with a customizable delay time. 
In addition, the elevation of terrain has been also modeled as 

a heatmap. In this case, the elevation mapping of a certain region 
has been used to elevate the base map, in order to have a 3D 
visualization of terrain. A TerrainLayer has been implemented 
for this purpose, combining the base orthomap with DTM data: 
the orthomap is exploited to get the ground texture, while the 
DTM is used for the elevation model. The result is a 3D 
representation of terrain with texture that better represent the 
territory. 

V. VALIDATION AND DISCUSSION 

To obtain a quantitative validation of the rooftop alignment 

results on our data, we manually created a set of ground-truth 

multi-polygon for 50 buildings scattered uniformly on the 

covered area. Then we evaluate the Intersection over Union 

(IoU) between the ground-truth and the input (non-aligned) and 

aligned multi-polygons. 

 In Figure 3 a bar plot is reported showing the IoU score 

obtained for each considered building. As can be seen, for all 

the test cases, the IoU increases after the alignment, confirming 

the effectiveness of the used approach. In average we obtain an 

IoU score of 0.7370 for the input multi-polygons, and 0.8848 

after the alignment, with an increase of almost 15%. 

 However, some failures are also present, and in Figure 4 we 

reported the most evident cases. Sometimes the input multi-

polygons were far from the corresponding rooftops, and due to 

the density of buildings in our data, the registration failed 

attaching an edge of the multi-polygon on the adjacent rooftop 

(see Figure 4a). The alignment cannot work also in the case of 

occlusion (Figure 4b) or demolished buildings (Figure 4c). 

Finally, if the input multi-polygon does not cover all the rooftop 

(due to introduction of new structure), the alignment is not able 

to stretch the multi-polygon effectively (see Figure 4d). 

VI. CONCLUSIONS 

 In this paper, a system for implementing a 3D city model 
with photorealistic texture integrated into a Smart City 
framework has been presented. The proposed solution follows a 
deep learning approach based on U-Net to detect the rooftops 
from aerial images and align them with the 3D map buildings,  

(a) (b) (c) 

(d) 
Figure 4 - Example of failures. In red the input multi-polygons, in green the aligned ones. In (a) an edge of the multi-polygon is erroneously attached to the 

adjacent building. In (b) some trees occlude the view of the rooftop, while in (c) the building was demolished. Finally, in (d) the input multi-polygon does not 

include a new structure (on the bottom-right part of the building) and the alignment fails consequently. 
 



which are obtained by extrusion from GeoJSON data. The 
solution is implemented in the open-source Snap4City platform 
as a multi-layer 3D map, which can be used by users as a widget 
on dashboards to visualize a full 3D city environment and a large 
variety of data, including IoT devices (city sensors and 
actuators, as well as private devices), POI, heatmaps, geometries 
and polylines related to cycling paths, bus routes, traffic flow 
etc. Specifically, users have the possibility to pick on map the 
single city elements and device markers and inspect their data 
and attributes. In this way, the proposed solution aims at 
providing an easy and smart navigation of the global digital twin 
of the city and the related data. The method employed for 
rooftop detection and alignment was validated against a set of 
ground-truth multi-polygon for 50 buildings, composed by 
uniformly scattered aerial images of the metropolitan area of 
Florence, achieving an IoU score of 0.7370 for the input multi-
polygons, and 0.8848 after the alignment. As a future work, an 
automatic procedure is going to be developed, in order to apply 
photorealistic texture also to building facades. 
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