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Abstract — Predictive Maintenance has gained more and 

more research and commercial interests, being a pivotal topic 

for improving the efficiency of many production industrial 

plants to minimize downtimes, as well as to reduce operational 
costs for interventions. Solutions reviewed in literature are 

increasingly based on machine learning and deep learning 

methods for prediction of fault proneness with respect to 

normal working conditions. Many state-of-the art solutions are 

not actually applied in real scenarios, and have restrictions to 

be executed in real-time in the production environment. In this 

paper, a framework for predictive maintenance is presented. It 

has been built upon a deep learning model based on Long-

Short Term Memory Neural Networks, LSTM and 

Convolutional LSTM. The proposed model provides a one-

hour prediction of the plant status and indications on the areas 

in which the intervention should be performed by using 
explainable LSTM technique. The solution has been validated 

against real data of ALTAIR chemical plant, demonstrating an 

high accuracy with the capability of being executed in real-

time in a production operative scenario. The paper also 

introduced business intelligence tools on maintenance data 

and the architectural infrastructure for the integration of 

predictive maintenance approach.  

Keywords—Predictive Maintenance, Industry 4.0, Deep 

Learning, Convolutional Neural Networks, CNN, Long-Short 

Term Memory Networks, LSTM. 

I.  INTRODUCTION 

In real world Industry 4.0 scenarios, it is necessary to 
maximize the efficiency and productivity of plants, in order to 

improve competitiveness in the market. To this end, a crucial 

role is played by the production plant maintenance. In addition 

to efficiency and productivity, good maintenance reduces 

operative costs, improves the product quality, and rationalizes 

resources. Typical kinds of maintenance policies are 

Corrective Maintenance (CM) and Preventive Maintenance 

(PM). The CM [Blanchard et al., 1995] or run-to-failure is 

quite expensive, it consists of the intervention after a failure in 

the production cycle that in most cases leads to the production 

plant stop. The PM is defined as maintenance carried out 

according to predetermined technical criteria [Gentles, 2020]. 
PM can reduce the number of failures/stops and can also be 

cyclical (time-based maintenance, TBM) and predictive 

(condition-based maintenance, CBM). In TBM the decisional 

process is determined on the basis of failure time analyses 

[Yam et al., 2001], [Jardine et al., 2006]. In complex 

production plants, different kinds of maintenance strategies 

may be adopted at the same time for different parts and 

production lines. For PM, solutions and techniques proposed 

in research literature can be classified in three approaches, 

based on: physical, data-driven and hybrid [Liao and Kottig, 

2016].  
          In this paper, an integrated solution for predictive 

maintenance in chemical plant is presented. Most of the 

chemical plants are critical infrastructures which present a 

production process never stopping and running 24H/7D per 

week. The case taken into account presents a production 

process including chemical products which have to be 

carefully treated for their potential impact on the environment 

in case of accident. This implies that early warning and an 

efficient corrective maintenance are mandatory policies to be 

established to become operative. The aspects addressed in this 

paper are: (i) the usage of deep learning techniques for 

predictive maintenance, specifically Long-Short Term 
Memory Neural Networks, LSTM and Convolutional LSTM, 

with some technique for explaining the prediction which can 

be used to help the maintenance teams; (ii) the integration of 

workflow management system for maintenance with general 

control systems and data flow (also developing Node-Red 

library for integrating data flow and workflow ticketing 

system); and (iii) a business intelligence tool for maintenance. 

The solution has been developed exploiting the IoT Industry 

4.0 development environment and framework called 

Snap4Industry, which in turn is based on Snap4City which is 

100% open source (and licence free) and it is available at 

[Https://www.snap4city.org], [Badii et al., 2020a], [Badii et 

al., 2020b]. The new capabilities have been exploited to 

implement the higher-level control in the large chemical plant 

of ALTAIR.  

     This paper is structured as follows: in Section II, a review 

of related work in the context of Predictive Maintenance is 

reported. In Section III, the general architecture of the solution  

is presented, where the action to put in place a predictive 
maintenance aspects to work in real time are evident. Section 

III.B describes the Business Intelligence for the analysis of the 

maintenance data. In Section IV, an early version of the  

Predictive Maintenance Model based on LSTM is described 

with its assessment. Section V presents an advanced Predictive 

Maintenance Model based on CNN-LSTM and its validation 

results. All the validations have been performed by taking into 

account data of ALTAIR chemical plant. In section V.C, an 

approach for explain the results in real time and thus for 

exploiting the maintenance predictions for the identification of 

the area in which to operate has been reported. Finally, Section 
VI reports  conclusions. 

https://www.disit.org/
https://www.snap4industry.org/
https://www.snap4industry.org/
mailto:paolo.nesi@unifi.it
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II. RELATED WORK 

The data-driven techniques used for the prediction of 

industry plant failures can be used as early warning, and firing 

activities of maintenance, as in CM. This approach aims to 

avoid/reduce the occurrence of major disasters that may 

happen on chemical plants. A typical approach consists of the 

following major steps: data acquisition, feature extraction, 

feature engineering, model training, finalizing a predictive 
model, and then perform predictive model validation/testing 

[Zhao et al., 2017]. In critical infrastructures, one has to set up 

any kind of planned maintenance, and resilience guidelines 

also impose to be ready for the unexpected unknowns [Bellini 

et al., 2019]. Data-driven based methods can be divided into 

two groups, based on two main approaches: traditional 

machine learning techniques (e.g., logistic regression, 

eXtreme Gradient Boosting (XGBoost) and Random Forest 

(RF) for supervised classification) and deep learning 

techniques. 

In [Binding et al., 2019], logistic regression, XGBoost 

and RF techniques have been used on environment variables 
and machine temperature variables to predict 30-minute 

machine failure in real time. From the evaluation of the 

Receiver Operator Characteristic (ROC) curves, all three 

algorithms perform significantly better than a random 

classifier. In [Uhlmann et al., 2018], k-means clustering 

technique was used to illustrate normal machine operation and 

three failure conditions, exploiting temperature and pressure 

sensor data. [Mathew et al., 2017] demonstrated how Support-

Vector Machine (SVM) techniques obtained a Root Mean 

Square Error (RMSE) of 0.732 on Gas turbine engine time 

series sensors. In [Kanawaday and Sane, 2017], a model based 
on Auto Regressive Integrated Moving Average, (ARIMA), 

has been proposed to predict production values, which are feed 

to different supervised models (Classification and Regression 

Trees, SVM, Naïve Bayes and Deep Neural Networks).  

        Many solutions exploiting deep learning models relied on 

flatten layer architectures, not considering temporal 

information [Zhou et al., 2020]. However, temporal 

information is important since machines typically degrade 

over time [Lei et al., 2018]. In [Zhang et al., 2018], Long 

Short-Term Memory (LSTM) neural network has been 

proposed to detect the system degradation and to predict the 
remaining useful life. In this context, another issue is 

represented by the fact that raw sensor data may contain 

relevant amount of noise, which can badly affect performances 

of LSTM models. Therefore, Convolutional Neural Networks 

(CNN) have been combined to LSTM to support the extraction 

of local features, in addition to temporal information [Zhao et 

al., 2017]. The main task of convolutional layers is to learn 

features from data input; actually, CNN were successfully 

applied for image classification. However, recently CNN have 

gained an increasing research attention also in the field of time 

series data analysis and classification. CNN-LSTM models 

have been successfully applied to time series analysis in 

different contexts, such as stock market forecasting [Kim and 

Kim, 2019], photovoltaic power predictions [Tovar et al., 

2020], outperforming traditional LSTM models for their 
roboustness to noise. In [Shao et al., 2019], a model for faults 

diagnosis in chemical process based on Multi-channel CNN-

LSTM architecture is proposed. The model achieved an F1-

score of 92.03% only on a simulated scenario, and not in a real 

test case. In [Huuhtanen and Jung, 2018], CNN are used to 

monitor the operation of photovoltaic panels aiming at 

predicting malfunctions on the panels. The approach 

outperformed compared approaches based on simple 

interpolation filters. In [Zhang and Zhao, 2017], a model 

exploiting a Deep Belief Network (DBN) has been presented 

for fault detection and diagnosis in a chemical process. The 

DBN model extracted the features from process data collected 
over a given time period, to classify the fault status, achieving 

an average fault diagnosis rate of 82.1%. In [Sánchez et al., 

2016], a method based on Deep Boltzman machine has been 

used for learning features and fault classification from 

vibration measurements of a rotating machinery. The fault 

classification performances assessed in experiments using this 

method report a classification rate of 95.17%. Accuracy 

greater than 90% have been also obtained with the use of 

Autoencoder and softmax regression in [Tao et al., 2015], 

where bearing failures are diagnosed by receiving as input 

their characteristics.  
The state of the art does not solve some typical problems 

in industrial plants. One problem is related to the amount of 

data describing failures. Most companies collect a huge 

amount of data related to the normal operating conditions of 

the plant. Moreover, the use of deep learning techniques 

creates problems of interpretability of the results. 

In Table I, a comparative overview of the above mentioned 

Related Work is presented.  

III. GENERAL ARCHITECTURE 

Industry 4.0 approaches expect to have a high level of 

digitization in the production plant. As a first step, a number 

of DCS (Distributed control systems) or SCADA (Supervisory 

Control And Data Acquisition) are devoted to control the  

production pipelines and machines. On top of them a higher 

level of control and supervision may be needed. The latter may 

be also used for telecontrol. All the industry subsystems are 

typically connected on local area networks, and a number of 

IoT devices may help to glue and monitor the in/out flows, 

Reference Techniques Data Type of predictions Real time Results 

[ Mathew et al., 

2017] 

SVM The method is tested on a simplified 

simulated time-series data set 

Estim. the remaining useful life (RUL) of systems 

and/or equipment by time series 

Simulated Traditional SVR obtained a 

RMSE=0.732 

[Kanawaday and 
Sane, 2017] 

ARIMA Data from  Slitting machine (Tension, 
Pressure, Width e Diameter.) 

Predicts parameter values for the production cycle. Yes accuracy 94.46% for CART to 98,69% 
for DNN 

[Shao et al., 2019] Multi-Channel LSTM-CNN Tennessee Eastman (TE) chemical process 

simulation  

Five-sample time series to predict the next sample  Yes Average  

F1-score of 92.03% 

[Zhang  et al., 2018] LSTM NASA’s C-MAPSS dataset Track the system degradation and to predict the 

remaining useful life 

No RMSE =18.07 

[Sánchez et al., 

2016]   

Deep Boltzman machine Two typical rotating machinery systems Diagnosing the health of rotating mechanical 

systems by classification 

Yes Accuracy = 95.17%.   

[Zhang and Zhao, 

2017]      

deep belief Network (DBN) Tennessee Eastman (TE) chemical process 

simulation dataset 

Extracts the feature from a process data period and 

classifies the fault status 

No Average fault diagnosis rate of 82.1%. 

[Tao et al, 2015] Autoencoder - softmax 
regression 

Bearing dataset of Case Western Reserve 
University 

Bearing failures are diagnosed by receiving as 
input their characteristics 

No Accuracy > 90% 

Table 1. Comparative overview of Related Work implementations 
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connections and areas among the machines, and production 

plants. On the basis of the foreseen planned production, the 

acquisitions of raw materials have to be scheduled for 

minimizing the stock. Thus the transportation of resulting 

products has to be carefully planned. In H24/7day active plant, 
any reason to stop production also impacts on delivering, 

ordering, transportation, etc. In addition, in chemical plants 

the production lines are in most cases connected each other 

(see Figure 1). Thus, subproducts (liquid, gasses, matter) of a 

production line, may be a primary matter or source of energy 

for the functioning of another line/transformation (ISx, input 

storage/source). This implies nonlinear cause effect and thus 

relationships among the several phases of the production lines. 

Moreover, multiple points may have storages and direct 

feeding with basic (e.g., ISx) and self-produced matter (S2), 

for example when the internal production is not enough or it 

is more expensive according to the market (for example 
transformation A can exploit IS3 and/or S2). In this view, the 

storages are important, and may create problems when they 

are full (no more space for producing other results/matter) or 

empty (not enough matter for the next process phases) since 

the production cannot continue. In addition, when they are full 

an immobilization of capital is also realized (see Figure 1).  

 
Figure  1 – Example of chemical production in plant in which storage 

(round squared) and matter transformations (squared) are connected in a 

network of consumer/producer. 

According to this view, an integrated solution for the 

production plant maintenance has to cope with a number of  

aspects. It has to present a ticketing management system 

addressing workflow for managing maintenance activities 

with teams of any kind. The teams have to be ready for 

planned maintenance as well as for corrective maintenance.  

Predictive maintenance may help them to perform preventive 

interventions (for example when it is possible to perform some 
changes into the flow from the control room, putting out of the 

production pipeline a part of the plant without stopping the 

rest). For example, to take raw materials from the same or 

different silos by using a secondary pump and putting a 

primary on maintenance. In most cases, the predictive 

maintenance produces probability of fault once per day/hour, 

since the stop of chemical plant could be very costly in terms 

of missed production.  

The unexpected critical events and alarms that lead to 

some intervention and plant dysfunction may be detected in 

control room by the operator, by plant alarms for flooding or 
any other detection of dysfunction, as well as through the 

information of some personnel observing the inception of a 

problem. All these aspects may lead to create a ticket on the 

Maintenance Management tools. Specific problems may be 

detected on control room observing DCS data on dashboards. 

The event produced from data analysis can be automatically 

generated by means of a direct connection from the control 

room to the management department, from data flow to 

workflow of the maintenance teams.   

The whole set of maintenance events have to be collected 

to be further analysed with some business intelligence tools 

for decision making and by some machine learning tool to 

perform some predictive maintenance.  

A. Architecture 

In this section, the general framework of the proposed 

solutions is presented in terms of functional architecture, as 

shown in Figure 2. The functional architecture presents 

several components which are described in the following by 

starting from left to right. The plant is controlled by a DCS 

(Distributed Control System) which produces a new status of 

the plat in  terms of measures every minute. It is controlled on 
the basis of a number of set points for a large number of 

machines (pumps, electrolysis, heating, fans, storages, etc.) 

from a control room. The values of the setpoints over time is 

planned on the basis of the production to be performed.  

 
Figure 2 – Functional Architecture 

 

The OpenMaint is an open source ticketing management 

system which implements: (i) the planned/scheduled 
maintenance activities, (ii) collect the tickets, (iii) prepare the 

teams, (iv) send them on the field and (v) collect the results 

according to a set of specific workflows.  

The Team Operators have in their hands a tablet to follow 

the instructions of the maintenance tickets, and a Web App to 

access at higher level data to see the settings and verify the 

plant status. They can be also started from the Team mobile 

App and interface, and by the Control Supervisor, which  may 

autonomously ask the Maintenance Team to create some 

Events on the basis of the data collected from DCS and/or on 

the basis of the Predictive Maintenance results. This last 
possibility is enabled by: (i) the development of a number of 

MicroService/Nodes for Node-RED into the Snap4City 

library for accessing to OpenMaint API, (ii) the Predictive 

Maintenance solutions presented in this paper, (iii) and by the 

whole architecture. Both, the data of the DCS, and those of the 

Ticketing system have been collected in ALTAIR for several 

years. As a first step, we started with the study of the 

relationships among the data collected from DCS and the 

events on Ticketing system. To this end, a Business 

Intelligence Maintenance tool based on Elastic Search and 

Kibana has been designed and set up. It allows to perform 
visual queries on the plant status and on the history of the 

maintenance interventions (see Figure 2). All the data 

collected by DCS and the Control Supervisor are also visible 

on a set of Dashboards realized by using Snap4City tool 

[Bellini et al., 2018].  The Dashboards allow to keep trace of 

the production status with respect to the historical data, and 

also to monitor the planned production with respect to the 
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actual production for each product of the whole chemical 

plant. The Control Supervisor collects in real time the DCS 

data and also data coming from administrative database, 

energy costs, etc., to compute the best plan for the next hours 

and days [Badii et al., 2020b]. In addition, it produces, in real 
time, the data driven streams towards a set of synoptics for the 

control room. Eventual alarms identified by the Predictive 

Maintenance are registered in the store and passed (in an 

event-driven manner) to the Control Supervisor and thus on 

the Synoptics, and also on the Ticketing via the API. 

 
Figure 3 - technical architecture of the Data Ingestion and data flows: 

from data sources, to IoT App processes, storage and Dashboards with 

custom widgets and Synoptics. 

 

From the technical point of view, the solution has been 

implemented by using Snap4Industry development 

environment which in turn is based on Snap4City technology 

[Badii et al., 2019]. In Figure 3, the technical implementation 

regarding data flow of the functional architecture of Figure 2 

is presented. In the solution, IoT Apps are Node-RED 

processes on Docker containers deployed on private cloud as 

IoT Edge. The IoT App connected with the OpenMaint 

ticketing system is the interface to access the new events 

produced by the operators, and to provide new event that may 
be identified by the Control system. Data are received in push 

and/or pull, and almost every data message with several 

attributes is considered an IoT Device instance. To this end, 

the IoT Devices have been registered, and their data 

structure/model formalized [Badii et al., 2020].  

Once registered, the received IoT messages by an IoT App can 

be sent into the system via the IoT Broker, which saves them 

automatically into the Data Storage. The IoT Apps can collect 

data in Push/Pull modalities, and in some cases a preliminary 

computation is performed. The arrival of a new message in the 

Broker may provoke the sending of a new message into the 

data storage as well as a set of messages towards the user 

interface clients (dashboards and mobile Apps). In fact, each 

client browser showing one or more Dashboards and each 
mobile App connected to the Dashboard Manager need to have 

established a number of permanent WebSocket connections to 

receive in real time any change on the data.  

DCS/SCADA data messages are received in push from 

OPC-UA. The DCS data includes measured values from 

productions flows, the settings planned and reached by the 

plant, status of the material storages, etc., such as for 

AcidoEsausto, FeCl2pot, FeCl3pot, FeCl3std, HCl32, HCl35, 

HCl36, KOH, HCl, K2CO3aq, NaOH50, that are the most 

important to represent the plant status and these are the values 

used by the planner algorithm.  

B. Business intelligence for maintenance 

The goal is to have a general overview of maintenance 

events, both planned maintenance and breakdown events that 

lead to downtime. It is possible to analyze the number of 

maintenance events per plant and per type of intervention by 

filtering on a chosen time frame. 
The tool of  Figure 4 presents six sections. In the first section, 

it is possible to choose the time frame by selecting the date 

(absolute) or by selecting years, months, or days (relative). In 

the second section, the  user can see the number of 

maintenance events in the selected period: the average and 

median of the number of hours needed to complete a 

maintenance intervention (intended as the difference between 

the start and end of intervention datetime). In the third section, 

it is possible to select data by specifying and/or the: Plant, 

Specialty, Work type. A graph shows the trend of the working 

plants (daily); if the time span is very wide the plants will be 

grouped by week or month. In the fourth section, through a bar 
graph, we keep track of the maintenance events carried out per 

day (weekly or monthly if the time frame is wide). It is 

possible to have several maintenance events for the same 

plant; therefore, a table at the bottom of the dashboard lists all 

the details by maintenance event Time, Permission List, Plant, 

Signature, Specialty, Status, Job Type, Air Temperature, air 

humidity and rain. In the fifth section, we have a visual 

representation of the maintenance events by Plant, Specialty, 

and Job Type. The font size depends on the frequency of the 

 
Figure 4 - Maintenance Dashboard, Business Intelligence for Maintenance 
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records. By choosing an item the dashboard widgets are 

filtered according to the choice. Finally, in the sixth section 

we have a pie representation of maintenance events by Plant, 

Specialty, and Job Type. From this dashboard it is possible to 

access the general management and control plant dashboards. 
In another section, we keep track of MTTF (mean time to 

Failure), MTTR (mean time to repair, and MTBF (mean time 

between failure, as MTTR+MTTF), current and trend values. 

Other information are:  (i) Average temperature of the day in 

which failures occurred in the plant, (ii) Average Humidity for 

the day on which failures occurred in the system. 

IV. FIRST PREDICTIVE MAINTENANCE MODEL 

According to the previous description, the challenge was 

to predict the plant failure 60 minutes before it happened. This 

section has two subsections; the first includes some 

descriptive notes about the dataset, while the second describes 

the architecture of the predictive model exploiting  the LSTM 
model and related validation. 

A. Data Description and Engineering 

The data collection has been conducted on the basis of 

about 300000 observations from 2020-04-28 to 2021-01-04 

(nonstop for COVID-19 since the production is mainly on 
chemical product for food industry). Regarding production 

data, the collected dataset is composed by a set of data coming 

from the DCS (such as plant: production, storage, status, 

several temperatures of elements, gear plants, process/safety 

parameters, chemicals compounds produced etc.) measured 

every minute. Therefore, a multi-feature dataset composed by 

1-minute observation was one of the inputs. A total of 343.183 

observations for 147 features/variables were measured. 

Regarding the faults, we had the list all the details coming 

from the Business Intelligence tool for maintenance including: 

event datetime, Permission List, Plant, Signature, Specialty, 

Status, Job Type, Air Temperature, air humidity and rain. 
Ticket and stop classification as "GENERAL PLANT STOP", 

"ORDINARY", "PLANT STOP" and "EMERGENCY". The 

label “ORDINARY” concerns all planned maintenance 

operations, while the labels "PLANT STOP" and "GENERAL 

PLANT STOP" concern programmed machine stops and 

finally "EMERGENCY" concerns machine stops due to an 

unexpected fault in the plant. In this way, a multi-feature 

annotated dataset has been created, considering data with the 

label "EMERGENCY" as faults, while all the other above-

mentioned labeled data as regular working conditions, in order 

to implement a predictive binary classification model (as 
described in details in Section IV.B). 

 
Figure 5 - Example of a variable affected by a failure in terms of 

percentage of plant production capability. 

 

       In total, in the selected period, there were a number of  

breakdowns in emergency, and they produced a wider number 

of time intervals in which the production has been 

stopped/reduced for dysfunction and repaired (see Figure 5). 

From the analysis, 28 variables have been identified removing 
those that replicated the same information in the production 

flow, as reported in Table 2. 

 
Table 2. Overview of feature measured at a given time. 

Feature Plant Description 
Unit of 

measure 

TempreactoreR4001 chlorine paraffins (CPS) reactor temperature 

indication R 4001 

°C 

TempreactoreR4002 chlorine paraffins (CPS) reactor temperature 

indication R 4002 

°C 

TempreactorR4003 chlorine paraffins (CPS) reactor temperature 

indication R 4003 

°C 

S4304 chlorine paraffins (CPS) level indication % 

standardFerric 

Chloride 

Potable Ferric std flow rate measurement and 

totalization 

m3 

S904C Potable Ferric std level indication % 

S904B Potable Ferric std level indication % 

S904A Potable Ferric std level indication % 

potFerricChloride Potable Ferric Chloride flow rate measurement and 

totalization 
m3 

S904E Potable Ferric Chloride level indication % 

S904D Potable Ferric Chloride level indication % 

QuantNaOHBatchNa
ClO_2 

NaOH KOH flow rate measure and 
totalization 

lt 

QuantNaOHperBatch

NaClO 

NaOH KOH flow rate measure and 

totalization 
m3 

ConversionNaOH NaOH KOH electrolysis load adjustment 

(production) 
kA 

ConversionKOHlinea

1 

NaOH KOH electrolysis load adjustment 

(production) 
kA 

KOH_1_charge NaOH KOH flow rate measure and 

totalization 
m3 

KOH_2_charge NaOH KOH flow rate measure and 
totalization 

m3 

S487 NaOH KOH level indication % 

S484 NaOH KOH level indication % 

S5104 NaOH KOH level indication % 

hypo sodium sodium hypochlorite quantity of material 
produced 

m3 

S857 sodium hypochlorite level indication % 

S856 sodium hypochlorite level indication % 

S851 sodium hypochlorite level indication % 

S852 sodium hypochlorite level indication % 

S854 sodium hypochlorite level indication % 

S871 HCl level indication % 

RedoxFeCl3Pot Ferric Chloride std potential measure redox 

Ferric Chloride 
mV 

 

Metrics S857, S856, S851, S852, S854, S871, S487, S484, 

S5104, S904E, S904D, S4304, S904C, S904B, S904A 

represent the level of the storages containing the chemical 

product. On  this regard, we calculated the difference with the 

previous miute to highlight the total daily production of a 
given substance. These derived metrics were added to the 

above-described set of variables, thus obtaining a total of 43 

features for 343183 minutes and few events of failure but a 

large number of minutes in which the plant have been 

stopped/reduced in the operative level. Then we have, on a 

total of 343183 1-minute observation data, 37286 minutes of 

failure leading to downtime. 

B. Classification model LSTM 

The aim of this first model is to predict the status of the 

plant (i.e., if the plant is properly working, under some failure 

for anomalies, and thus failures which may lead to  

downtimes/stops). This is equivalent to a multi-variate binary 

classification problem (considering two classes labelled as 

“Normality” and “Fault” for normal working conditions and 

failures, respectively), taking into account also temporal 

dependency. The prediction should be 1 hour in the future, 

considering the data measured in the previous 20 minutes with 
respect to the current observation.  
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Given the requirements, a deep learning model based on 

LSTM was adopted. The fact that we take only 20 minutes 

data with respect to the current is marginally relevant, since 

LSTM model per se keep tracks the temporal evolution for 

much larger number of time instants. The model architecture 
is composed by  LSTM layers with a Rectified Linear Unit 

(ReLU) activation function. During the training and 

hyperparameter optimization phases, we noticed that adding 

more LSTM layers improved the quality of prediction results. 

To this end, 5 LSTM layers have been placed. Since our goal 

was a binary classification, we used a Dense output layer with 

a single neuron and a sigmoid activation function. The model 

is compiled to minimize the log loss (in our case, the 

binary_crossentropy metric) with an Adam optimizer. 

In order to properly represent the dataset for the 

classification task, and to suitably prepare the input data for 

the LSTM layers, data have been reshaped into sequences, 
considering the previous 20 time-steps (i.e., 20 minutes) for 

each observation, and aiming at predicting the plant status 60 

minute in the future (please note that the 20 minutes are just 

the time windows at the last time interval while the network 

has the capability to keep memory of a much longer time 

interval in its hidden layers). Therefore, the input dataset has 

been organized as the following time series: 
(𝑋1, 𝑋2, … … , 𝑋20) (𝑌80) 
(𝑋2, 𝑋3, … … , 𝑋21) (𝑌81) 

… … … … 
(𝑋𝑛 , 𝑋𝑛+1, … … , 𝑋𝑛+19) (𝑌𝑛+79) 

where 𝑋1, 𝑋2 … 𝑋𝑛 are multi-feature data, and 𝑌𝑛 the plant 

status measured at temporal instants (representing minutes) 

t=1, t=2,…,t=n. Then, we split our dataset into 70% for train 

data, 15% for validation data and 15% for test data. 

To avoid overfitting, a dropout layer was inserted and an early 

stopping procedure was defined, monitoring the validation 

loss. This means that, if after a certain number of training 

iterations (set to 10 epochs in our case) the validation loss does 
not decrease, then the training is stopped. In this way, it is 

possible to prevent overfitting due to over training epochs 

when the validation loss is no longer improved. Finally, an 

automated hyperparameters optimization was performed 

through a Randomized Search Cross-Validation. The best 

model resulting from the whole process of parameters 

optimization and cross-validation is represented in Figure 6. 

 
Figure 6 –LSTM Architecture Model 

The above-described model has been adopted for predictions 

of the plant working status on unseen test data, with the 

capability of being executed in real-time on real production 

data. 

C. Validation of the LSTM MODEL 

The dataset used for validation is composed of 15% of the total 

data. Overall accuracy was calculated as the number of 1-

minute observations during normal minutes working 

conditions, plus the number of correctly classified 1-minute 

observations of failures minutes as a fraction of the total 

number of minutes1-minute observations. The resulting 

accuracy was 87.40%. The ROC curve has been computed and 
plotted in Figure 7. It represents the classification 

performances, with True Positive Rate (TPR) on y-axis against 

the False Positive Rate (FPR) on x-axis. Moreover, the 

associated Area Under Curve (AUC) was calculated. The 

resulting AUC value is 0.822. 

 
Figure 7 - ROC curve for the LSTM model 

The confusion matrix is reported in Table 3. 
Table 3. Confusion Matrix for the LSTM model 

Predicted Class 

Actual Class 
Normality Fault 

Normality 43485    3229 

Fault 3246 1436 

 If we consider as class” Normality” and “Fault”, recalling 
the definitions of True Positive (TP) as an outcome where the 

model correctly predicts the positive class, False Positive (FP) 

as an outcome where the model incorrectly predicts the 

positive class, and False Negative (FN) as an outcome where 

the model incorrectly predicts the negative class, we can 

compute the following classification metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,    𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Finally, the model predictive classification performance is 

reported in Table 4, where 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑔 = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑙𝑎𝑠𝑠1 ∗
𝑆𝑐𝑜𝑟𝑒𝐶𝑙𝑎𝑠𝑠1 +  𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐶𝑙𝑎𝑠𝑠2 ∗ 𝑆𝑐𝑜𝑟𝑒𝐶𝑙𝑎𝑠𝑠2 , and Support 

represents the number of cases inside the test dataset. 
Table 4. Predictive Classification Model evaluation results for the 

LSTM model 

 Precision % Recall % 𝐅𝟏  score % 

weighted avg        0.87       0.87       0.87      

V. ADVANCED PREDICTIVE MODEL WITH CNN-LSTM 

With the aim to get more accurate data we tried to reduce the 

effect of noise by added a CNN layer to our model. The CNN-

LSTM approach provides the advantages of combining CNN 

powerful feature extraction with the capability of LSTM in 

capturing temporal dependencies. CNN are actually useful for 

learning spatial local features from input time series [Wang et 

al., 2017], since they have the capability of performing an 

optimized smoothing of the signal (through the 1D 

convolutional and pooling layers), while maintaining  the 

underlying data trend. Therefore, they can extract local 
features of time-series data (including multi-variate time-

series) more accurately, thus improving the performances of 

subsequent LSTM layers in learning temporal dependencies 

[Xie et al., 2020]. 
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A. Classification model CNN-LSTM 

In this case, the model architecture is composed by a one 

dimensional convolutional layer, followed by an Average 

Pooling layer that computes the average on the output of the 

previous convolutional layer across all time steps. Then we 

added LSTM layers with a Rectified Linear Unit (ReLU) 

activation function. During the training and hyperparameter 

optimization phases, we noticed that adding more LSTM 

layers improved the quality of prediction results. To this end, 

5 LSTM layers have been placed. Since our goal was a binary 

classification, we used a Dense output layer with a single 
neuron and a sigmoid activation function. The model is 

compiled to minimize the log loss (in our case, the 

binary_crossentropy metric) with an Adam optimizer. 

Finally, an automated hyperparameters optimization was 

performed through a Randomized Search Cross-Validation. 

The best model resulting from the whole process of parameters 

optimization and cross-validation is represented in Figure 8.  

 
Figure 8 – CNN-LSTM Architecture Model 

B. Validation of CNN-LSTM model 

As before for the LSTM, the dataset used for validation has 

been composed of 15% of the total data. Overall accuracy was 

calculated as the number of 1-minute observations during 

normal minutes working conditions, plus the number of 

correctly classified 1-minute observations of failures minutes 

as a fraction of the total number of minutes1-minute 

observations. The resulting accuracy was 91.81%. The ROC 
curve is reported in Figure 9, and the  resulting AUC value is 

0.934. Showing in this cases better performance of CNN-

LSTM with respect to the LSTM. 

 

 
Figure 9 - ROC curve for the CNN-LSTM model 

 

The confusion matrix is reported in Table 5. And the  

classification performance are reported in Table 6 
Table 5. Confusion Matrix of CNN-LSTM approach 

Predicted Class 

Actual Class 
Normality Fault 

Normality 45811    903 

Fault 3306 1376 

Table 6. Predictive Classification Model evaluation results 

 Precision % Recall % 𝐅𝟏  score % 

weighted avg        0.90       0.92       0.90      

C. Explainable CNN-LSTM to exploit the results 

In order to interpret the results, the Shapley additive 

explanation (SHAP) has been used. Through this analysis it 

has been possible to understand how much each feature 

contributes (positively and negatively) to the prediction of a 
failure, and therefore it is possible to have both an overview 

on how to intervene at maintenance level on future failures and 

ideas to improve our model. The SHAP explanation method 

computes Shapley values from coalitional game theory. The 

feature values of a data instance act as player in a coalition. 

Explanations obtained by the Deep SHAP method are 

represented graphically. In the Figure 10, we have an 

explanation regarding the failure prediction (see Figure 10a) 

and the normal operation prediction (see Figure 10b) using our 

test data set. The SHAP results at each prediction time instant 

are recorded together with the Boolean output of the predictor  
expressing the probability of fault. The trends of the SHAP for 

each of the variable describe the activation of the network and 

thus are used to identify which are the causes of the predicted 

fault when it occurs. Therefore, with tune thresholds with 

respect to typical trends a list of critical variables are 

produced, and these variables correspond to DCS /IoT Devices 

into the plant and thus to sections of the production plant. Thus 

a maintenance team and the personnel in the control room are 

informed providing this list and area as a fundamental 

information at the support of their decision.   

Through the image we can see how different features 

contribute positively to the failure output (shown to the left of 
the base value in red) and those that contribute negatively to 

the failure output (shown to the right of the base value in blue 

). As we can see in Figure 10a, the most relevant features in 

the fault determination are the production derived features 

diff_S854, diff_S904B of two different production lines (i.e., 

sodium hypochlorite and Potable Ferric std). Other relevant 

features are the RedoxFeCl3Pot and the charging features. 

Production anomalies are a warning symptom of a fault. Even 

for the plant normality situation (see Figure 10b), the charge 

features and the derived production features are the main 

contributors to the prediction of our CNN-LSTM model. 

VI. CONCLUSIONS 

In this paper, a predictive maintenance model for 

classification of failures in a real industrial process has been 

presented. The proposed solution is based on a deep learning 

CNN-LSTM architecture, predicting the working status of the 

productive process in the Altair chemical plant. The proposed 

model CNN-LSTM provides a one-hour prediction of the 

plant status and indications on the areas in which the 

intervention should be performed by using explainable LSTM 

technique. Assessing the proposed method with real 

production data, experimental results show an average 
Accuracy of 91.8% and an average F1-score of 90%, which 

are very good results considering that the proposed model 

provides predictions of the plant working status one hour in 

the future, and it is capable of running in real time (thus aiming 

at resolving some lacks found in other state-of-the art 

solutions). The explanation of the predictions provides 

suggestions for the maintenance teams. The paper also 
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introduced business intelligence tools on maintenance data 

and the architectural infrastructure for the integration of 
predictive maintenance approach into the whole control and 

management system of ALTAIR industry 4.0 plant in the 

context of SODA and large renovation of the production 

infrastructure.  
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(a) 

(b) 
Figure 10 - Explanation of  prediction generated by model for fault (a) and normality (b).  

Please note that this is an example of a specific event. 
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