
Searching for Heterogeneous Geolocated

Services via API Federation

Ala Arman, Pierfrancesco Bellini, Paolo Nesi

DISIT Lab, DINFO department, University of Florence

Http://www.disit.org
<name>.<Surname>.@unifi.it

Abstract. In the context of Smart City applications, the usage of Smart City APIs, for exposing

services and data to web and mobile applications, is quite frequent. Most of the mobile solutions,

using the Smart City APIs, are focused on a single city which can expose several services that

are contextualized on a single geographic area. In fact, passing from one city/area to another, the

users must change applications and services, and consequently, discontinuity problems could

occur at the border. This also happens for the lack of interoperability among the Smart City APIs

and related operators that may strongly differ, depending on the applicative levels at which they

are developed. A large part of the services proposed via Smart City APIs are geo-localized, and

as a result, may provide different results according to the GPS coordinates of the client context.

In this paper, the problem of the federation of smart city services is addressed by proposing a

solution for federating smart city APIs, related knowledge-base, and ontology. To this end, a

solution to autonomously federate API services has been presented together with other require-

ments (e.g., efficiency, overlapped and included areas of competence, distributed searches, secu-

rity and privacy, scalability, interoperability among different smart city application servers)

which are typically neither all satisfied by classical Geographical Information System (GIS) so-

lutions that federate the services at the level of database nor by those based on Internet of Things

(IoT) Brokers. The solution is open-source and has been developed in the context of the

Snap4City European platform enhancing the former Km4City Ontology and API of the Sii-Mo-

bility national project (https://www.snap4city.org). The solution is presently in use in Snap4City

federation of Smart City Services in Europe, among several cities/areas including, Florence, Tus-

cany, Bologna, Helsinki, Antwerp, Valencia, Dubrovnik, and Mostar, just to mention a few.

Keywords: knowledge base, smart city API, smart city services, federation of

smart cities, FiWare, IoT Orion Broker

1 Introduction

In the context of Smart Cities, not all cities/areas are becoming smart in the same man-

ner and are smart at the same level because provided services are typically different [1].

In most cases, the cities decide to address only a selection of smart services (e.g., smart

parking, smart education, smart gov., smart lighting), and not others, according to their

needs and strategies. Therefore, vertical applications have been implemented for years

and are not integrated in most of the cases. In the context of Smart City applications

http://www.disit.org/
https://www.snap4city.org/

2

(web and mobile), most of the early solutions have been based on GIS and provide

standard solutions for distributing geo-localized entities (e.g., maps, shapes), using pro-

tocols such as Web Feature Service (WFS), Web Map Service (WMS) [2]. Other solu-

tions provide data via Open Data platforms such as the Comprehensive Knowledge

Archive Network (CKAN) [3]. These solutions provide Application Programming In-

terfaces (APIs) to access a single dataset file as well as a collection of APIs provided

by multiple stakeholders in the city/area and the possibility of exchanging these de-

scriptions via harvesting protocols. IoT solutions, based on IoT brokers for the smart

city, have been also proposed. For example, FIWARE-based solutions, which expose

Next Generation Sensors Initiative (NGSI) REST APIs, are provided to the Web and

mobile clients to access the data, typically last values (and not historical values), di-

rectly accessing IoT sensor data (and not sophisticated data structures via sematic que-

ries) [4]. A strong push on the usage of Smart City APIs (SCAPIs) for providing and

creating data and services for web and mobile applications has been recently observed

(e.g., the Knowledge Model for the City (Km4City) API [5] , E015 [6], [7]). Therefore,

with the aim of developing smart city solutions, the usage of SCAPIs can be the way to

provide smarter applications, considering multiple aggregated data sources and analy-

tics (e.g., weather, reasoning, and predictions on parking, traffic and people flow [8]).

On the other hand, most of the SCAPIs services are focused on a single city/area and

expose a limited number of contextualized services in the same geographic area (e.g.,

info-mobility, Point of Interest (POI), routing, smart light, smart parking). In fact, in

most cases, passing from one city/area to another, the users must get other applications

to get the same services. This also happens due to the lack of interoperability among

the SCAPIs at a semantic level that is not standardized and may strongly differ depend-

ing on the applicative levels at which they are developed.

In this paper, a solution for federating SCAPIs among geographic areas and contexts

is presented. The development of the proposed solution for the smart city federation

overcomes the problems of GIS and open data solutions. The main addressed problems

are related to the possibility (i) to provide a network of geolocated services without

constraining the providers to agree on the service shared with the other providers, (ii)

to provide the clients a GIS/IoT list of results services without reporting eventual du-

plications on overlapped and/or duplicated services, (iii) not to pose limits to the

size/shape of the geo-area and of the shared number of services, iv) to avoid addressing

the problems of data privacy in a centralized structure, (v) to (or not) decide to join the

network of services, (vi) to offer (non-)geolocalized information along with services in

the network, and (vii) to provide a scalable and fault-tolerant solution for recovering

services. The main cases are depicted in Fig. 1, where two regions of services may be

overlapped, or one included in another. The services can be present in both (thus they

are duplicated) or in one and even shared among them such as a passing road/path from

one to another.

Therefore, the main contributions of this paper are: i) the possibility of federating

Snap4City/GIS solution with FIWARE solutions based on IoT Orion Broker, and ii)

the assessment of performance for the federated solutions and to the access private and

public IoT devices. The validation of the presented solution has been performed by

considering 4 large areas and smart city services (together with smaller areas) in place

3

covering the Tuscany region of 3.5 million of inhabitants in the center of Italy, north

of Italy (Garda area) and Sardegna island, Antwerp and north of Belgium, Helsinki and

south of Finland, Spain (Valencia), Occitanie (Pont du Gard), Dubrovnik, and West

Greek. To solve the above-mentioned problems, the solution reported in this paper has

been completely developed open-source and presently used in a federation of

Snap4City (https://www.snap4city.org) Smart City Services and APIs in Europe in-

cluding federated services in different cities and regions (e.g., Florence, Tuscany re-

gion, Helsinki, Antwerp, Dubrovnik, Garda, Valencia, Pont du Gard, Greek) [9].

Fig. 1. Overlapped and included areas of services, with duplicated, exclusive, and shared services

of two areas.

The paper is organized as follows. Section 2 reports and discusses the related works.

In Section 3, the requirements identified for federating SCAPIs are presented and ana-

lyzed. Section 4 presents the general architecture and solution of the proposed

Snap4City federation smart city services which may cover single cities and regions,

with area and service overlaps and flexibility. The same section also includes the formal

presentation of the operational model of the federation of SCAPI enabling the solution,

thus addressing both local and geo-distributed services and information. Section 5

briefly describes the Km4City Ontology and the developed web-based tool for the pro-

posed solution. Section 6 presents the mechanism for propagating the queries of the

SCAPI in the federated network, managing the exception, and combining the results.

Section 7 provides a description of the validation and the experiments performed for

the assessment of the performance of semantic queries and for those regarding IoT de-

vices/sensors to access private/public city entities, via federated queries, by different

user roles. Conclusions are drawn in Section 8.

2 Related Work

The first smart city applications have been developed by exploiting technologies of GIS

solutions which the federation of services also allows data exchange [2]. The classical

GIS interoperability is limited to a 1: 1 exchange of geographical data; for example,

exploiting protocols (e.g., WFS, WMS) for the exchange of Maps and geo-elements

(e.g., paths, POIs, road elements, road graphs). A Web-service-based software for data

discovery, download, visualization, and analysis has been proposed in [10] which

https://www.snap4city.org/

4

included a middle layer, named HIS Central, mediating among clients and data located

on distributed GIS-based HydroServers. The solution is then focused on delivering GIS

data and not full smart services. In [11], the CityPulse project has been proposed for

real-time data stream analysis by exploiting semantic modeling. In [12], a wide review

of IoT solutions for smart cities has been presented with current and future research

directions. The paper has performed an extensive analysis of literature identifying ma-

jor keywords and domains of applications, but only marginally addressing smart city

interoperability. In the context of Smart Cities, the solutions for managing geograph-

ically distributed Big Data to provide Smart Services are more relevant [13], especially

when they are capable to work on a large scale (i.e., spreading across sets of cities,

intersects with the problem of managing with the Big Data generated by dense and/or

extensive environmental monitoring systems [14]).

Other solutions provide data via Open Data platforms (e.g., CKAN [3]) which pro-

vides APIs to access the single dataset file and a collection of APIs provided by multiple

stakeholders in the city/area and the possibility of exchanging these descriptions via

harvesting protocols. A similar approach has been proposed by 𝐸015 with their collec-

tion of SCAPIs and services in the north of Italy [6]. IoT solutions, based on IoT bro-

kers, for the smart city, have been also proposed; for example, FIWARE-based solu-

tions which expose NGSI Rest APIs are provided to web and mobile clients to access

data (typically last values and not historical values), directly accessing IoT sensor data

(and neither via sophisticated data structures nor semantic queries) [4], [15], and [16].

They mainly move the complexity of the service to the Mobile Apps since the IoT bro-

ker only provides data, and thus, the business logic of the application must be else-

where. Therefore, smart city applications may use those APIs for implementing their

logic on the server and client sides. In most cases, mobile and Web Apps need to be

updated when a new data type is added.

A review of SCAPIs can be recovered on [17] and [18]. Examples of more complete

SCAPIs are: Km4City API on a large range of SCAPIs to search and retrieve infor-

mation and services [5], on DIMMER for the composition of smart city services ex-

ploiting service-oriented architecture [7], CitySDK which provides a set of smart city

services without federation and Transport APIs on mobility. An early version of the

SCAPI federation has been presented in [19].

3 Requirements and Analysis

In this section, the requirements that should be satisfied by a solution for federating

SCAPI are reported and discussed. The solution should be a distributed system of

SCAPIs to create a federation of City services. The federated network is conceptually

a middleware, based on a set of SCAPI services (provided by Nodes), that is inde-

pendently offered and maintained by a number of cities/areas. The federation approach

should not be confused with a collection of APIs in a common basket to expose them

uniformly in terms of definitions. It is, in fact, managed and offered by different organ-

izations that provide the service to a single city/area (e.g., [6], [3], [20], [21]).

5

Therefore, according to the definition of a federated SCAPI network of Nodes, the ser-

vices, and in particular, each Node, should satisfy the following advanced requirements.

Req.1. not permanently replicate data of other Nodes;

Req.2. support distributed search on the network federated Nodes. The computa-

tional workload for providing results is distributed among the nodes which can

work only on their own data;

Req.3. be of any size in terms of geo area and data volume. The geospatial size and

shape of each Node may be (i) of any form and multiple connected (so-called

multi-polygon). A Node may manage one or more geo-areas even if they are dis-

tant and not neighbouring areas, (ii) partially overlapped with other Nodes, (iii)

totally included in other Nodes, and (iv) disjoint and even far from each other;

Req.4. offer a different number/kind of services. This allows a Node to provide

different kinds of services without constraints and to autonomously decide the set

of provided /removed services;

Req.5. contain (non-) georeferenced services. There may exist services that are ge-

neric for a certain Node and not associated with a GPS position (e.g., global ser-

vice of payment, global service to save the car position);

Req.6. respond to API calls in terms of services in a transparent manner, thus al-

lowing clients to pass from one Node to another. When federated nodes are

geographically contiguous, requested results may take into account both areas and

avoid duplications of results;

Req.7. support access control to prevent access to services by non-authorized us-

ers. Users should be registered and authorized in multiple services/cities to freely

access the protected data on both sides when authorization may arrive from a com-

mon Single Sign-On (SSO). This feature opens the path for multi-site operators,

such as those for parking, car sharing, etc. This requirement implies a set of access

rules to assure that the data is accessed only by authorized personnel at which the

single Node may grant access independently, considering access authorization and

GDPR compliance [22];

Req.8. join and abandon the network, without the need for network restructuring,

and modifications with an immediate effect when no service reloads or disrupts;

Req.9. provide query results in real time even in presence of a large number of

Nodes. The implementation should provide support for creating redundant solu-

tions with high resilience and fault-tolerance;

Req.10. provide search query results in a coherent format with the expected response

of the single services. For example, REST calls in some cases provide responses

in JSON, XML, or HTML formats;

Req.11. interoperate with Nodes based on data services, for example, IoT Brokers,

when they are supported by historical databases and geo-queries (as in FIWARE

[4]);

Req.12. support services based on IoT Devices. This is possible if the Node is able to

manage IoT Devices as an IoT Broker or the Knowledge Base, KB, exploited by

the Node, is capable of modelling, indexing, and searching IoT Devices. To this

end, the Km4City Ontology, by supporting the Industry 4.0 domain, has been

6

extended to model IoT Devices by including a range of IoT Brokers, protocols,

and devices;

Req.13. support the creation of disjoint federations of Nodes and the presence of

independent services which are not connected to any federation of Nodes.

Req.14. support for an interactive user interface.

In Section 4, the architecture, Req.1 is satisfied by the solution because different

Nodes/servers do not locally copy the data of the other services and only know about

the presence of the other services. In fact, the nodes/servers keep their high-level de-

scriptor, in terms of area of competence, as described in Sections 4 and 5. Meeting

Reqs. 11, 12, and 13, by the solution, has been also demonstrated in Section 4. Reqs.

2, 3, 4, 8, and 9 are satisfied through validation and performance assessments in Sec-

tion 7. Reqs. 5 and 6 are discussed in Section 7.1. In addition, Req.7 is satisfied and

addressed at the level of single SCAPI, according to security aspects, as described in

[22]. The evidence for the satisfaction of Req.10 has been described in Section 7.2.

Also, Req. 14 is briefly highlighted in Section 5.1, while the actual implementation is

accessible via https://www.snap4city.org and specifically via

https://www.snap4city.org/MultiServiceMap/.

4 General Architecture of Federated Services and SCAPIs

To satisfy the above-described requirements, we have designed and implemented the

solution reported in Fig. 2 in terms of its architecture. It is based on a network of fed-

erated Nodes exposing services via SCAPI. The Nodes, which are called Super, each

of which (i) provides access to services via SCAPI formalism as REST API to client

applications of the federated network and (ii) exploits SCAPI of the actual Smart City

service providers and of other Supers. According to Req.11 on interoperability, the

Nodes/Supers can be on the front of the SCAPI interface of two kinds of smart city

servers: (i) Snap4City/Km4City, which provides GIS data via WFS/WMS, services via

SCAPI, querying the smart city server with SPARQL queries, and exploiting the

Km4City Ontology on the RDF store Virtuoso, and (ii) SSM2ORION (SuperServ-

iceMap to Orion FIWARE), which converts the call on SCAPI to NGSI V2 Rest Calls,

provides data information accessible from FIWARE solution, based on IoT Orion Con-

text Broker, with storage support, using well known tools (e.g., Quantum Leap broker,

CrateDB) as described in the following [4]. According to Fig. 2, Node (a) manages data

of Area 1 by the Km4City RDF store and ServiceMap. Nodes (b) and (c), using the

Km4City RDF stores and in a balancing and fault-tolerant approach, share the same

geo-Areas 2𝑎 and 2𝑏. Node (d) is covering Area 3 with an IoT Orion Broker FIWARE

and a related storage. Some of the Nodes manage overlapped areas while Areas 4𝑎 and

4𝑏 are managed by an independent service. It is noted that some of the areas covered

by Nodes contain multiple disjoint subareas. To avoid having a single point of failure,

each Node includes a master of the distributed communication among Supers reporting

the lists of Nodes/Supers and providing services to the clients. A central server, with

the list of the connected Supers, is made accessible in one or more Web servers for the

https://www.snap4city.org/
https://www.snap4city.org/MultiServiceMap/

7

periodic update of Supers. Each Node/super has a representation of the multi-polygon

addressed by the nodes (with their data/services) and thus of their partitioning over the

nodes of the federated SCAPI network. In more details, each Node may be registered

in the list of Supers with its descriptor of the multi-polygon area of competence.

Fig. 2. General Architecture of Super and Federated SCAPI network

The most relevant aspects and complexity of the procedure are mainly related with (i)

identification of the Nodes to be involved, according to the requests received, with a

complexity that may depend on the size of the node descriptors (number of polygons),

(ii) distribution of query in each Super, with a complexity 𝑂(1), which is based on the

decreasingly sorted execution time of nodes, using a multithreading approach, and (iii)

collection of results and their fusion, as the main complexity, to avoid duplicates and

compounding the results, with a complexity, depending on the size 𝑆 of the elements

𝑂(𝑆).

In Fig. 3, a simplified architecture is reported where the authentication and authori-

zation layer which allows to satisfy Req.1. It is noted that, while any kind of data may

be integrated via Data Connectors in Node-Red (including WFS/WMS of GIS via

Snap4City tools), IoT Devices can be registered on the IoT Directory of Snap4City and

connected via one or more IoT Brokers with different protocols. New IoT Devices must

be registered, and each data access must be authorized according to the user authenti-

cation/authorization [22]. In the case of Federated Nodes, the authentication/authoriza-

tion must satisfy the GDPR. In addition, the federation can also be performed at the

level of authentication and SSO-SAML (Security Assertion Markup Language) of Key-

Cloak. Snap4City is then based on OpenID Connect and JWT Access Token while the

role management is performed by using Lightweight Directory Access Protocol

(LDAP) federation protocols.

8

Fig. 3. Snap4City solution integrated with Federated Nodes

5 Km4City Data Model and User Interface

Km4City Ontology [23] is based on several vocabularies (e.g., DCTERMS, FOAF,

SCHEMA.org, WGS84_pos) [24]. It addresses several domains namely, mobility and

transport, energy, health, economy, and key performance indicators (KPIs), just to men-

tion a few while modelling concepts such as POIs, road structure, and civic numbers.

The Km4City Ontology I, based on 10 macro-classes/areas (e.g., Places, Administra-

tion, POIs). These concepts and relations may model a wide spectrum of applications

(e.g., indoor routing, the automatic building of context-rich synoptics). Regarding the

modeling of Data Analytics results, the Km4City ontology provides, for example, the

Predictions macro-class together with a set of associated concepts (e.g., BusStopFore-

cast) which enables the representation of the expected arrival/departure time of a given

ride at a given stop [19].

5.1 User Interface Exploiting SCAPI: SuperServiceMap

In this section, we present details on the designed and developed a web-based tool to

perform the queries via a graphic user interface, called SuperServiceMap, which is

freely accessible via www.snap4city.org and depicted in Fig. 4. Using the selector in

the center of the tool, the user can define to connect the user interface to a Super as well

as to one of the SCAPI services of the single organization/node (e.g., Firenze, Helsinki,

Valencia) which 18 of them are present now. The menu on the right comprises two

tabs. One is dedicated to categories (e.g., Accommodation) and sub-categories (e.g.,

Camping, Farm, Hostel), associated with Regular Services, while the other contains

categories (e.g., Area) and sub-categories (e.g., Gardens, Sports_facility) regarding

Transversal Services. The user can select, in addition to the possibility of instant search-

ing for a service category or a sub-category, a set of them, including Regular or Trans-

versal. Also, it is possible to limit the search results, using N. Results, or filter them,

9

using the Text Search and Search Range (e.g., 100 (𝑚)) together with the Service

Model and Value Type [25] options.

The menu on the lower left is used to show the weather information (e.g., mini-

mum/maximum temperature) in a region. The menu on the upper left is used to obtain

information on Public Transportation, Address Search, and Events along with the pos-

sibility of text service search in a desired area. Considering the Public Transportation

tab, it is possible to detect the current position of vehicles, using the associated Agency

(and Line). The user can also see a Route (or all of them) of a Line and a Stop/station

(or all of them) of a Route, together with detailed information on stops/stations. It is

possible to Search Path, considering the Route Via (e.g., car, public_transport) and Start

date&time options, and Search Geometry between two selected points. The interface

also allows performing text search when constraining the search around a point or in a

given area.

Fig. 4. SuperServiceMap tool (https://www.snap4city.org/MultiServiceMap/)

6 Federation of Enabled SCAPI via Network of Supers

In this subsection, the actions needed to enable the federation of Nodes are described

by starting from the limitations and the improvements performed on former SCAPI as

it was presented in [17]. The full list and semantic of input arguments for API is avail-

able on https://www.km4city.org/swagger/external/index.html .

6.1 Enhancing Smart City API on Geo-distributed Services

The extension of the SCAPI has been performed on specific query and data types that

may be shared over different areas managed by different nodes and API services in the

network. In more detail, since an area can be overlapped with other areas, some of the

geo-located elements can be completely located/duplicated in multiple areas, partially

located into multiple areas (e.g., a national across multiple provinces or regions).

https://www.snap4city.org/MultiServiceMap/
https://www.km4city.org/swagger/external/index.html

10

Therefore, the most affected services are those related to Service discovery and infor-

mation family of APIs, that depending of values received from input arguments, per-

forms a search for services (i) close to a given position (identified by a GPS location or

service), (ii) within the boundaries of a bounding box described through the geospatial

coordinates of its vertexes, (iii) within a shape of a given geographic area (which can

be defined as a Well Known Text (WKT) shape format), with an arbitrary shape or the

shape of a city, a province, etc., or iv) through the submission of a full-text to be

matched in addition to or without geo restrictions. The key parameter through which

the geographical area of interest is delimited is called Selection. It can be (i) a Point

plus distance, (ii) two points, or (iii) a shape for which builds a geographic area.

More complex entities are those including a Path or a Shape in the Selection. For

example, the Bus Lines may pass into the area of Selection even if they do not present

any Stop into the area. Therefore, because of certain Selection, one could be interested

to retrieve the Lists of Lines, Routes, Stops, etc. that are different from a geographical

position or area. Among the most complex queries, those along paths need special at-

tention (e.g., cycling path, bus-lines, routing paths). The identification of Services along

a path implies to search for services that are close to the path within a certain distance.

Otherwise, the perfect match on the path would be too selective. Therefore, the search

along a path must be transformed to a search into a closed polyline which has the Se-

lected path as mean point by point.

Queries to identify Shortest Route/Paths to compute the best route from a starting

point to a destination through a modal or multimodal routing provide results only when

both the start and the destination parameters are geospatial coordinates belonging to the

same service Node/area. However, to get the results, it is also possible to provide the

URI of the service where they locate, and/or the URI of the service where they wish to

go. In this case, the following are checked: (i) the Node managing them (via cache or

via request) and (ii) if there exists a Node that matches both the required source and

destination; otherwise, an error is returned. The error management allows to split the

problem in distinct routing queries towards the corresponding Node services.

The results of the queries are services expressed as a list of ServiceURI (services are

stored as resources in the RDF store and identified through a URI that also is a Uniform

Resource Locator (URL) from a Linked Data perspective). On the contrary, if it is not

possible to identify the corresponding Super managing the entity, all nodes must be

queried. To reduce this effort, the pairs ServiceURI and Node ID are cached for short-

ening time of future requests.

6.2 Exceptions in the Selection of Nodes to be Queried by the Supers

With the aim of creating fault-tolerant redundant solutions, it possible to have different

Super largely covering the same area. To maximize performance or making a priori

balance on services, it is possible to define a priority, among the different Supers/nodes,

based on the query/areas or on services or exclude some of them in specific cases.

Nodes with the same priority are queried in random order. Thus, the above-described

distribution of queries based on the area of competence, based on the API type and/or

output format, can be overwritten by specific rules for each Super,. This mechanism

11

can be used to redirect the requests to a specific node non-geolocated services as

planned, according to Req.5.

6.3 Merging Node Results of any Format

The results of Snap4City SCAPI can be provided in JSON or HTML [17], according to

the request performed. When the result of a call is requested to be in JSON, a resulting

message can be easily merged. On the contrary, if the result is requested in HTML, a

final full Web page is provided (e.g., a set of geolocated services, each of which is

represented by a clickable pin drawn on a map) with relative URLs to JavaScript, style

sheets, images, etc. can be found. Also, the Super may need to combine multiple results

by merging data of different Nodes with possibly different base URLs. Therefore, the

HTML received from the Nodes must be first parsed, and then, relative URLs identified

and replaced with full URLs by simply prefixing them with the base URL of the Node

that has produced the Web page. Remarkably, operating this way, artifacts, located on

a Node, are directly addressed and embedded in a Web Page that is provided by the

Super, operating the server-side on the original Node, which leads to managing the

Cross-Origin Resource Sharing (CORS) [26].

7 Performance Assessment and Validation

This section describes the results of the validation and performance assessment of the

proposed solution for managing distributed geo services when addressing the problems

derived from the overlap and inclusion of different areas and their geo services (e.g.,

locations, paths, shapes), as depicted in Fig. 1. Considering both scenarios, we com-

pared the performance of results when direct and federated queries are formulated. The

queries have been performed by searching for (i) all regular services (i.e., single points

as POIs), including 20 categories and 540 sub-categories, and (ii) a regular service

TransferServiceAndRenting with 47 associated sub-categories (e.g., Tramline, Ur-

ban_bus). For the assessment, we focused on measuring the Response Time (RT) and

Number of Results (NoR), by identifying circular areas with different diameters, rang-

ing from 1 to 100 (Km).

7.1 Case (a) for Overlapped Areas

This case has been assessed in real conditions at the border of two adjacent regions,

with two overlapping KBs, in terms of services modeled by Km4City (as tenants on

Snap4City.org platform), namely, Florence, and Garda Lake. Fig. 5 reports the query

results, all presented in clusters, when searching for all regular services, including all

categories and sub-categories, when the radius is equal to 50 (𝑘𝑚), and the center has

been placed on the center of the overlapped area, at the border (in yellow) of two prov-

inces of Florence and Bologna.

12

(a)

(b)

 (c)

Fig. 3. Results for query on all Regular Services on an overlapped area (case (a) of Fig. 1), when

search radius is equal to 50 (𝑘𝑚), only Firenze KB (a), only Garda Lake KB (b), and full query

results on the federated network (c) (GPS Center location (Lat,Lon): 44.122657449923224,

11.212175488471985).

Table 1 reports the results of the performance assessment for the described Case (a)

scenario. For example, when the search radius is equal to 50 (𝑘𝑚), the NoR for Regular

Services, considering Florence and Garda Lake regions, are respectively equal to

80546 and 23213 entities. The number of results for the same search via Super is equal

to 91483 entities which is slightly different than the sum of results (80546 +23213 =
103759) due to the presence of 12276 duplicated data (NoD, Number of Duplicates).

For example, bus-stops of lines that connecting Florence and Bologna/Garda Lake re-

gions must be available in both areas. Regarding the RT, it can be observed that, the

Super has a better performance when the two regions are considered separately. For

example, when searching for all Regular services and the search radius is equal to

50 (𝑘𝑚), the response time, is 104640 (𝑚𝑠), using the Super is which less than the

sum (87600 (𝑚𝑠) + 78660 (𝑚𝑠)), and more than the max of the two RTs, Max_NoR,

(87600, 78660). It is noted that the RT for super also includes the time for eliminating

the duplications.

13

Table 1. PERFORMANCE RESULTS FOR THE CASE (A) OF Fig. 1. (OVERLAPPED

REGIONS): SINGLE NODES (FLORENCE, GARD LAKE) VS. SUPER.

Considering Fig. 6, it can be observed that the performance of the solution is very good

in terms of RT if the query at the border is in the range of 10 (𝑘𝑚) (which is very

realistic for the smart city and rural services, in Europe), even in the presence of a high

number of duplications (NoDs) and a very high NoR. When the range of the query is

very large (e.g., 50 − 100 (𝑘𝑚)), the number of resulting objects and duplications may

be very high and thus the RT to get all results from Super is still comparable with re-

spect to the RT of the service providing the majority of the results.

(a)

Query/kind

Search

Ra-

dius

(𝑘𝑚)

Node/Organization/Region
Super

Florence Garda Lake

NoR
RT

(𝑚𝑠)
NoR

RT

(𝑚𝑠)
NoR

RT

(𝑚𝑠)

Get Regular Services

(case 𝐴1)

1 0 1578 11 3160 11 3050

5 47 1592 143 1106 159 1334

10 260 1622 362 2570 485 2940

50 80546 87600 23213 78660 91483 104640

100 139279 270180 48259 191580 154774 271500

Get TransferService-
AndRenting service

(case 𝐴2)

1 0 1661 11 3100 11 3100

5 31 1437 125 1128 125 1576

10 150 1623 339 2650 352 2670

50 18720 78900 17856 79140 24281 90360

100 40163 212160 42393 189900 49769 236040

RT in ms

NoD

14

(b)

Fig. 6. Comparative trends to get regular (case 𝐴1) and transversal services (case 𝐴2) in over-

lapped areas w.r.t. to the range in 𝑘𝑚. (a) reports in Log Scales the trends of RT for super case

A1 and case 𝐴2 respectively, 𝑆𝑅𝑇𝐶𝐴1, and 𝑆𝑅𝑇𝐶𝐴2, where on the right the data regarding the

NoD; (b) reports the comparison of in Log scale of the trend of the NoR and NoD for Cases 𝐴1

and 𝐴2 respectively.

7.2 Case (B) for Inclusion Areas

Considering different search radiuses, this case has been also addressed in real condi-

tions by examining three regions namely: Garda Lake, Snap4eu, and DISIT (managed

by different organizations), where the KBs of Snap4eu and DISIT, in terms of services

modelled by Km4City (as tenants on Snap4City.org platform), is included in the KB of

Garda Lake. Fig. 7 shows an example of the described scenario when the search radius

is equal to 100 (𝑘𝑚).

(a)

(b)

Number of objects: NoR, NoD

km

15

(c)

(d)

Fig. 7. Results for query on Regular Services on an inclusion area (case (b) of Fig. 1), when

search radius is equal to 50 (𝑘𝑚), considering, only snap4eu KB (a), only Garda Lake KB (b),

DISIT (c), and full query results on the federated network (d).

We compared the results when the queries are performed on the federated net-

work (Super). Table 2 reports the validation and performance assessment re-

sults for the above-mentioned scenario. As on can see, for example, when the

search radius is equal to 100 (𝑘𝑚), the NoR for Regular Services, considering

Snap4eu, Garda Lake, and DISIT regions, are respectively equal to 231, 4385,

and 2086. The NoR for the same search, the Super find 4621 results which is

much smaller than the sum (231 + 4385 + 2086) of the results coming from the

single organizations: Snap4eu, Garda Lake, and DISIT. Regarding the RT, we

can see that, using the Super provides a response time comparable with the

larger service. For example, when searching Regular services and the search

radius is equal to 50 (𝑘𝑚), the RT for super is 440 (𝑚𝑠), which is comparable

with 322 (𝑚𝑠) presented by the GardaLake service which provided the major-

ity of the results.

Table 2. PERFORMANCE RESULTS FOR THE CASE (B) OF INCLUSION REGIONS

(SNAP4EU, GARD LAKE, AND DISIT): SINGLE NODES VS SUPER.

Query/kind

Search

Radius

(𝑘𝑚)

Node/Organization/Region
Super

Snap4eu Garda Lake DISIT

NoR
RT

(𝑚𝑠)
NoR

RT

(𝑚𝑠)
NoR

RT

(𝑚𝑠)
NoR

RT

(𝑚𝑠)

Get all Regular

Services (case B1)

1 11 64 9 1541 0 81 20 1513

5 19 76 16 1880 1 944 36 2140

10 25 65 22 3220 1 646 48 3310

50 125 186 430 322 1 127 556 440

100 231 197 4385 12900 2086 12425 4621 12760

16

8 Conclusions

This paper presented a solution for federating Smart CityAPIs that provide data and

services. The solution aims to satisfy requirements that presently cannot be met by tra-

ditional solutions based on GIS or IoT Brokers. The proposed solution, while avoids

migrating data, provides federation at level of APIs, involves nodes of any size (in terms

of geo area and number of content/entities), and combines them autonomously so that

each of them may (not) decide to join an area/content. It also leaves the possibility of

having different kind of services, enables the movements among federated areas, re-

spects privacies according to GDPR, and combines services with IoT Brokers NGSI of

FiWare and GIS via WFS/WMS, by using Snap4City tools. Moreover, the proposed

solution provides scalable performance in data access even in the case of private de-

vices, etc. It finally allows the creation of separate clusters of federated APIs and

standalone solutions. The main results include the formalization of decisions for the

propagation of queries, optimizing the composition of results in an efficient manner,

the possibility of federating Snap4City solutions with native FiWare solutions based on

IoT Orion Broker, the assessment of performance for the federated solution, and access

private and public IoT devices. To design, implementation, and validation of the solu-

tion, we enhanced the former Km4City Smart City API and ontology to improve the

semantic queries that can be overlapped among different areas. We also developed an

adapter from/to NGSI V2 of IoT Brokers FiWare and Smart City API. The validation

has shown that the solution is scalable and viable in terms of performance by removing

the duplications at a reasonable expense, for urban and rural areas, even in presence of

a large number of duplications. When the range of the query is very large (e.g., 50 −
100 (𝑘𝑚)), the number of resulting objects is high, while the response time of federated

solution is still comparable with respect to the response time of the service providing

the majority of the results.

Future work on this research line should address the new emerging protocol of

NGSI-LD that is going to bring semantic descriptions into the messages. It is presently

based on a non-consolidated but still interesting set of data models. Therefore, the con-

nection of FiWare brokers based on NGSI-LD could allow to extend some of the se-

mantic reasoning also to those nodes.

ACKNOWLEDGMENTS

The authors would like to thank the European Union’s Horizon 2020 research and

innovation program for funding the Select4Cities PCP project (supported within the

Snap4City framework) under the grant agreement No. 688196, and all the companies

Get Transfer-

ServiceAndRent-

ing service (case

B2)

1 0 61 0 1705 0 117 0 1813

5 0 62 0 1816 0 1326 0 1770

10 0 62 0 3290 0 688 0 3090

50 11 66 57 993 0 160 68 1103

100 11 75 3102 13820 2081 12790 3113 13980

17

and partners involved. Snap4City and Km4City are 100% open-source technologies

and the platform of DISIT Lab can be accessed at https://www.snap4city.org.

REFRENCES

1. Hernández-Muñoz, J.M., Vercher, J.B., Muñoz, L., Galache, J.A., Presser, M., Hernández

Gómez, L.A., Pettersson, J.: Smart Cities at the Forefront of the Future Internet. In:

Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco,

S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S.,

Avessta, S., and Nilsson, M. (eds.) The Future Internet. pp. 447–462. Springer, Berlin, Hei-

delberg (2011). https://doi.org/10.1007/978-3-642-20898-0_32.

2. Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F., Ananthakrish-

nan, R., Miller, N., Denvil, S., Morgan, M., Pobre, Z., Bell, G.M., Doutriaux, C., Drach, R.,

Williams, D., Kershaw, P., Pascoe, S., Gonzalez, E., Fiore, S., Schweitzer, R.: The Earth

System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data.

Future Generation Computer Systems. 36, 400–417 (2014). https://doi.org/10.1016/j.fu-

ture.2013.07.002.

3. Herrera-Cubides, J.F., Gaona-García, P.A., Gordillo Orjuela, K.: A View of the Web of

Data. Case Study: Use of Services CKAN. Ingeniería. 22, 46–64 (2017).

https://doi.org/10.14483/udistrital.jour.reving.2017.1.a07.

4. IoT Orion Broker FiWare with Persistence, https://github.com/FIWARE/tutorials.Time-

Series-Data, last accessed 2022/02/25.

5. Badii, C., Bellini, P., Cenni, D., Difino, A., Nesi, P., Paolucci, M.: Analysis and assessment

of a Knowledge based Smart City Architecture Providing Service APIs. Future Generation

Computer Systems. 75, 14–29 (2017). https://doi.org/10.1016/j.future.2017.05.001.

6. Zuccalà, M., Verga, E.S.: Enabling Energy Smart Cities through Urban Sharing Ecosystems.

Energy Procedia. 111, 826–835 (2017). https://doi.org/10.1016/j.egypro.2017.03.245.

7. Krylovskiy, A., Jahn, M., Patti, E.: Designing a Smart City Internet of Things Platform with

Microservice Architecture. In: 2015 3rd International Conference on Future Internet of

Things and Cloud. pp. 25–30 (2015). https://doi.org/10.1109/FiCloud.2015.55.

8. Arman, A., Bellini, P., Nesi, P., Paolucci, M.: Analyzing Public Transportation Offer wrt

Mobility Demand. In: Proceedings of the 1st ACM International Workshop on Technology

Enablers and Innovative Applications for Smart Cities and Communities. pp. 30–37 (2019).

9. Badii, C., Belay, E.G., Bellini, P., Cenni, d, Marazzini, M., Mesiti, M., Nesi, P., Pantaleo,

G., Paolucci, M., Valtolina, S., Soderi, M., Zaza, I.: Snap4City: A Scalable IOT/IOE Plat-

form for Developing Smart City Applications. In: 2018 IEEE SmartWorld, Ubiquitous In-

telligence Computing, Advanced Trusted Computing, Scalable Computing Communica-

tions, Cloud Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). pp. 2109–2116 (2018).

https://doi.org/10.1109/SmartWorld.2018.00353.

10. Ames, D.P., Horsburgh, J.S., Cao, Y., Kadlec, J., Whiteaker, T., Valentine, D.: HydroDesk-

top: Web services-based Software for Hydrologic Data Discovery, download, visualization,

and analysis. Environmental Modelling & Software. 37, 146–156 (2012).

https://doi.org/10.1016/j.envsoft.2012.03.013.

11. Kolozali, Ş., Bermudez-Edo, M., Farajidavar, N., Barnaghi, P., Gao, F., Intizar Ali, M.,

Mileo, A., Fischer, M., Iggena, T., Kuemper, D., Tonjes, R.: Observing the Pulse of a City:

A Smart City Framework for Real-Time Discovery, Federation, and Aggregation of Data

Streams. IEEE Internet of Things Journal. 6, 2651–2668 (2019).

https://doi.org/10.1109/JIOT.2018.2872606.

https://www.snap4city.org/

18

12. González-Zamar, M.-D., Abad-Segura, E., Vázquez-Cano, E., López-Meneses, E.: IoT

Technology Applications-Based Smart Cities: Research Analysis. Electronics. 9, 1246

(2020). https://doi.org/10.3390/electronics9081246.

13. Anttiroiko, A.-V., Valkama, P., Bailey, S.J.: Smart Cities in the new Service Economy:

Building Platforms for Smart Services. AI & society. 29, 323–334 (2014).

14. Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C.J.A., Buytaert, W.: Web technologies for

Environmental Big Data. Environmental Modelling & Software. 63, 185–198 (2015).

https://doi.org/10.1016/j.envsoft.2014.10.007.

15. Latre, S., Leroux, P., Coenen, T., Braem, B., Ballon, P., Demeester, P.: City of Things: An

Integrated and Multi-technology Testbed for IoT Smart City Experiments. In: 2016 IEEE

International Smart Cities Conference (ISC2). pp. 1–8 (2016).

https://doi.org/10.1109/ISC2.2016.7580875.

16. Salhofer, P., Buchsbaum, J., Janusch, M.: Building a Fiware Smart City Platform. In: Pro-

ceedings of the 52nd Hawaii International Conference on System Sciences (2019).

17. Nesi, P., Badii, C., Bellini, P., Cenni, D., Martelli, G., Paolucci, M.: Km4City Smart City

API: An Integrated Support for Mobility Services. In: 2016 IEEE International Conference

on Smart Computing (SMARTCOMP). pp. 1–8 (2016).

https://doi.org/10.1109/SMARTCOMP.2016.7501702.

18. Namiot, D., Sneps-Sneppe, M.: On Software Standards for Smart Cities: API or DPI. In:

Proceedings of the 2014 ITU kaleidoscope academic conference: Living in a converged

world - Impossible without standards? pp. 169–174 (2014). https://doi.org/10.1109/Kalei-

doscope.2014.6858494.

19. Bellini, P., Nesi, D., Nesi, P., Soderi, M.: Federation of Smart City Services via APIs. In:

2020 IEEE International Conference on Smart Computing (SMARTCOMP). pp. 356–361

(2020). https://doi.org/10.1109/SMARTCOMP50058.2020.00077.

20. Soto, J.Á.C., Werner-Kytölä, O., Jahn, M., Pullmann, J., Bonino, D., Pastrone, C., Spirito,

M.: Towards a Federation of Smart City Services. In: International Conference on Recent

Advances in Computer Systems. pp. 163–168. Atlantis Press (2015).

21. Bonino, D., Alizo, M.T.D., Alapetite, A., Gilbert, T., Axling, M., Udsen, H., Soto, J.A.C.,

Spirito, M.: ALMANAC: Internet of Things for Smart Cities. In: 2015 3rd International

Conference on Future Internet of Things and Cloud. pp. 309–316 (2015).

https://doi.org/10.1109/FiCloud.2015.32.

22. Badii, C., Bellini, P., Difino, A., Nesi, P.: Smart City IoT Platform Respecting GDPR Pri-

vacy and Security Aspects. IEEE Access. 8, 23601–23623 (2020).

https://doi.org/10.1109/ACCESS.2020.2968741.

23. Km4City ontology, https://www.snap4city.org/drupal/node/19,

https://www.snap4city.org/download/video/DISIT-km4city-City-Ontology-eng-v5-1.pdf,

last accessed 2022/02/25.

24. Bellini, P., Benigni, M., Billero, R., Nesi, P., Rauch, N.: Km4City Ontology Building vs

Data Harvesting and Cleaning for Smart-city Services. Journal of Visual Languages & Com-

puting. 25, 827–839 (2014). https://doi.org/10.1016/j.jvlc.2014.10.023.

25. Arman, A., Bellini, P., Bologna, D., Nesi, P., Pantaleo, G., Paolucci, M.: Automating IoT

Data Ingestion Enabling Visual Representation. Sensors. 21, 8429 (2021).

https://doi.org/10.3390/s21248429.

26. doc: RFC 6454: The Web Origin Concept, https://www.hjp.at/doc/rfc/rfc6454.html, last ac-

cessed 2022/02/25.

