

1

ETL and Console of the Virtual Machine
User Manual

January, 2018

Abstract

This manual exposes techniques and guidelines for the implementation of a good data acquisition
process to enrich the knowledge base that is the basis of several national (SiiMobility, http://www.sii-
mobility.org) and European projects (Resolute, http://www.resolute-eu.org; Replicate,
http://www.resolute-eu.org; Select4cities, http://www.select4cities.eu). The tools used are: Penthao
Spoon, Karma, Apache Phoenix, MySQL database and Hadoop HBase. The main goal is to present a
guided example. The user is invited to follow (where possible) the useful tips provided by tutors. The
user is also invited to discuss with them for any doubt or question. The tutors themselves will be in charge
of reviewing and validating the processes carried out by the user.

1 Introduction: ETL process (Extract, Transform, Load)
The data acquisition process is composed by several phases. A preliminary phase involves the study of the
assigned dataset. It’s needfull to understand the data to proceed in the best viable way to the following
phases. Generally, two types of datasets are identified:

• static: information about the type of service identified, which presumably does not change over
time or that anyway have sporadic variations. For example the geographical location of a building,
the identifier, the address, etc.

• real-time (or periodic / dynamic): information that changes over time (in short intervals) therefore
requires a higher acquisition frequency and usually has a static price

Example: Dataset that includes information on the state of traffic flow reported by various sensors located
in the city of Florence.

In this case there are both static data and dynamic data:

• static: sensor position (coordinates) and related specifications (id, type of measurements, etc.)

• real-time (or periodic / dynamic): number of cars / motorcycles / etc. crossing a stretch of road, etc.

Note that in this case the dynamic data is connected to the static one: it is necessary to know which sensor in
Florence estimated the passage of N cars in a given time T.

The processing of these two types of datasets requires different techniques. You need to create an ETL for
static data and a different ETL to capture and process the dynamic data:

• Each ETL provides for the final upload of data on HBase tables.

• As previously mentioned, it is necessary to maintain the connection between static and related
dynamic data (if present). The connection is made via a common column in the HBase tables of
the two ETLs (static and dynamic). This column contains the identifier (of a sensor, of a hospital,
other). Through this connection it will be possible to connect dynamic data to static information.
In Figure 1 it’s possible to appreciate an example.

http://www.sii-mobility.org/
http://www.sii-mobility.org/
http://www.resolute-eu.org/
http://www.resolute-eu.org/
http://www.select4cities.eu/

2

Figure 1a): row of a HBase table related to static data

Figure 1b): Example of HBase tables of a dynamic data, connected to the static data of 1a)

Possibile kinds of datasets:

• static ONLY datasets: points of interest (POI, Point of Interest) of a city (churches, museums, etc.)
• dynamic ONLY dataset: earthquakes reports (they are real time and the epicenter of the earthquake is

always different)

1.1 ETL input and output

The ETLs are mechanisms of data processing. They start from the ingestion (Extraction) and then continue
with the re-elaboration of the data that includes phases of qualification and aggregation of data
(Transforming) and the loading of data on the store (Load).
It has been decided to maintein:

• The final data:
o in a NoSQL store (HBase)
o in rdf triples (to aggregate data between themselves and connect them to KM4City multi-

ontology)
• the input parameters of the ETLs in a MySQL table. For example: web server address to download

the dataset, user license associated to the downloaded dataset, description of the dataset and /or data
provider, directory where the rdf triples (file.n3) will be saved, the semantic category of KM4City
associated with the data (class), etc. The table is called 'process_manager2', and is the same for all
ETLs. The information to be included in this table are explained in detail in paragraph 4.

2 How to use the Virtual Machine and ETL tools

Virtual machine (VM) access:

The Virtual Machin can be executed with VMware player or workstation, with the following credentials:

• User: ubuntu

• Password: ubuntu

Tools to use and related commands:
The following tools are needed to manage the ETL in the VM.

1. Connect to HBase:

o Links:

 http://hbase.apache.org/

o Version: Apache HBase ver. 1.2.5 (Database NoSQL), in uso come stand alone

o Commands:

 To run HBase (from any directory): "start-hbase.sh"

 To stop HBase (from any directory): "stop-hbase.sh"

 To check the execution: “jps”

 To check the execution from web interface, visit the web page :
http://localhost:16010/master.jsp

2. Connect to Mysql:

o Links:

 http://www.mysql.com

http://hbase.apache.org/
http://localhost:16010/master.jsp
http://www.mysql.com/

3

o Commands:

o Use browser: PhpmyAdmin interface http://127.0.0.1/phpmyadmin/ with credentials:

 Username: testuser

 Password: testpw

 Administrator: root

 Password: toor

3. Use of Phoenix:

o Links:

 https://phoenix.apache.org/language/datatypes.html

 http://www.hadooptpoint.org/filters-in-hbase-shell/

 https://forcedotcom.github.io/phoenix/

o Commands:

 To create a Phoenix tabel from command line:

• go to the directory: "cd /home/ubuntu/Desktop/Utils/ create_table.sql"

• run the command to open the file "nano create_table.sql"

• run the command to execute the query in the file: "psql.py localhost
create_table.sql"

 To manage tables from command line:

 sqlline.py 127.0.0.1:2181:/hbase

 !tables

 drop TABLE test_hbase;

 select serviceID from Electric_vehicle_charging;

4. Use of Karma data integration:

o Links:

 http://usc-isi-i2.github.io/karma/

o Version: 2.024

o Commands:

 To start Karma: run "mvn -Djetty.port=9999 jetty:run" from the directory "cd
programs/Web-Karma-master/karma-web"

o Web interface:

 http://localhost:9999

5. Penthao Kettle (in particular the graphic tool Spoon):

o Links:

 www.pentaho.com/

 https://wiki.pentaho.com/display/EAI/Pentaho+Data+Integration+Steps

o Version: Pentaho Data Integration (PDI) ver. 7.0

http://127.0.0.1/phpmyadmin/
https://phoenix.apache.org/language/datatypes.html
http://www.hadooptpoint.org/filters-in-hbase-shell/
https://forcedotcom.github.io/phoenix/
http://usc-isi-i2.github.io/karma/
http://www.pentaho.com/
https://wiki.pentaho.com/display/EAI/Pentaho+Data+Integration+Steps

4

o Commands:

 To start Spoon, run the following command from any directory on the virtual
machine : spoon.sh

3 Nomenclature rules

Each ETL has a set of Nomenclature rules to be respected. In the more complex case, where a dataset has both
the static and the realtime (or periodic / dynamic) parts, the rules are as follows:

• Main folder: datasetName_originalDataFormat

o Folder ‘Static’ (contains the ETL process of static data)

 Folder ‘Ingestion’ (mandatory)

• ‘Main.kjb’

• N_files.ktr (an undefined number of ktr files of Pentaho transformations)

• M_files.kjb (an undefined number of kjb files of Pentaho jobs)

 Folder ‘QualityImprovement’ (optional)

• Main.kjb

• N_files.ktr (an undefined number of ktr files of Pentaho transformations)

• M_files.kjb (an undefined number of kjb files of Pentaho jobs)

 Folder ‘Triplification’ (mandatory)

• Main.kjb

• N_files.ktr (an undefined number of ktr files of Pentaho transformations)

• M_files.kjb (an undefined number of kjb files of Pentaho jobs)

o Folder ‘Realtime’ (contains the ETL process of real-time or periodic data)

 Folder ‘Ingestion’ (mandatory)

• Main.kjb

• N_files.ktr (an undefined number of ktr files of Pentaho transformations)

• M_files.kjb (an undefined number of kjb files of Pentaho jobs)

 Folder ‘Triplification’ (optional, ONLY in special cases, if required)

Example:

• PisaBikeSharing_kmz

o Static

 Ingestion

• Main.kjb

• getAPI.ktr

• Ingestion.kjb

• Database.ktr

5

• …

 QualityImprovement

• Main.kjb

• Qi.ktr

• ….

 Triplification

• Main.kjb

• …

o Realtime

 Ingestion

4 Static data ingestion
The acquisition process for this type of data includes the following three phases:

• Ingestion: the data is downloaded, for example, from a web server or from a file and uploaded to
HBase.

• It is necessary to follow the nomenclature rules to store the data in the file system and on
HBase. The file system storage serves only as a further control, the one on HBase allows
the real management of data..

• Example of storing datasets (as they are made available by the providers) in the file
system, or the path:

• Sources/Servizi/PisaBikeSharing_kmz/2017/12/19/15/3938 (for more details,
see chapters 5 and 6)

• Example of HBase table: “PisaBikeSharing” with family ‘Family1’

• Quality Improvement: the data is improved and completed (the data just inserted in the HBase table is
improved and saved on a new table, for example: streets with uppercase characters, additions of
coordinates if missing, correction url / numeric numbers / phone numbers or other)

• Example of HBase table : “PisaBikeSharing_QI” with family ‘Family1’

• Triplification: the output is performed as triples in a file.n3, referring to the km4city ontology

• It is necessary to follow the nomenclature rules to store the data in the file system..

4.1 Static data acquisition

Figure 1: Main.kjb pipeline

In Figure 1, it is possible to appreciate the internal structure of the Main.kjb file which corresponds to a
Spoon job. Jobs may contain other jobs, transformations or simple blocks. For example, the Ingestion job
contains:

6

• The step ‘start’ (to start the ETL process)

• Three transformations (which correspond to the different data manipulation phases and which are
described in detail in the following subsections):

o Ingestion

o QI

o Triplification

• The step ‘Success’ (to terminate the ETL process)

This structure must be strictly manteined for all ETLs (this also facilitates the reuse of ETLs).

The first task to be performed BEFORE being able to start working on the ETL, is to define the input data,
i.e. to update the MySQL table called 'process_manager2' of the ‘Elaborato_Sis_Distr’ database. This table
contains one row for each ETL.

Figure 2: A row from the table Elaborato_Sis_Distr.process_manager2

As it possible to see in Figure 2, the key of the table is the 'process' column. The value assigned to this
column is not random, it must show some information of the process itself such as: an identifier of the data,
the format of the file and the type of the process. In this example we see
“Electric_vehicle_charging_kmz_ST”.

Other fields of primary importance are:

• Resource: brief description of the data

• Category: m a i n directory (where the data will be downloaded and where the file.n3 will be saved)

• Format: file format (kmz, csv, xml, json, etc.)

• Access: p r o t o c o l b y w h i c h t h e f i l e i s o b t a i n e d (es: ftp, http, etc.)

• Real_time: process type

• Source: file source

• Param: path to the file (es: http://dati.toscana.it/dataset/rt-oraritb/resource/ee55333c-fe53-4599-981d-
389b13f28bb1)

In the "Main.kjb" job, it is necessary to set a processName as input parameter. This value must be the same
of the key of the row inserted in the database (table 'process_manager2', column process). See Figure 3.

Figure 3: Main.kjb properties.

We proceed with the description of the single transformations that realize the static ETL: Ingestion, QI,
triplification.

4.1.1 Ingestion
In this transformation we proceed in the following way: i) the dataset is acquired from the provider (for
example downloading a file from the web, through ftp, doing crawling, etc.) and is saved in a file in the
file system; ii) the data is read from the file just memorized; iii) extraction of relevant data; iv) storage of
the data extracted on a HBase table. In Figure 4 it is possible to appreciate the pipeline of the

7

Main_Ingestion.kjb job, which contains other steps, jobs, transformations.

Figure 4: Main_Ingestion.kjb pipeline

The getConfig step simply loads a configuration file and sets global variables. These variables allow the
use of relative rather than absolute paths. See Figure 5. The config.csv is located in the folder
"/home/ubuntu/Desktop/Trasformazioni/".

Figure 5: getConfig.ktr pipeline

The Database step (referring to Figure 4) is a Transformation Executor and calls the Database.ktr
transformation which has the structure shown in Figure 6.

Figure 6: Database.ktr pipeline

The table input step (always referring to figure 6), retrieves from the MySQL table process_manager2 all
the fields related to the running process through a SQL query.

The Build Date step (in figure 6) is a block in which it is possible to write Javascript code. In this case,

8

starting from the current date are created some fields to construct the path in which it is possible to store
the downloaded file. Then in the SetactualDate step the fields defined above are saved into variables.

In the Create last file folder and Create a folder steps (see Figure 5) the folders that will host the source file
and the '1LastFile' folder are created. In ‘1LastFile’ a copy of the latest version of the downloaded file will
be stored.

Finally, Figure 7 shows the Job Download.

Figure 7: Download.kjb pipeline

In the HTTP step the fields are set: 'URL', as the address from which to download the file of interest;
'Target', as a path to save this file (obviously the paths are relative, i.e. the previously set variables are used).
Then a check is made: if the source file containing the data just downloaded already exists within the
1LastFile folder, a comparison is made with the one just downloaded (compare the current data with those
previously downloaded, in case the ETL has already been started).
If the two files are identical, the newly created folders are deleted and the job ends in Success 2, this means
that the data made available by the Data Provider have not changed and that we already have the updated
data (so there is NOT need to analyze them again). Otherwise the copy within the 1LastFile folder is updated
with the new data. In the example we proceed by unzipping the file and inserting the data into a HBase
table.
Figure 8 shows the transformation pipeline. The data in this case is read from a file.kml, it is "cleaned up"
and finally it is inserted in HBase through the HBase Output step. This table must be called
Electric_vehicle_charging_ST.

9

Figure 8: HBase_Insert.ktr pipeline.

4.1.2 Quality Improvement
The Quality Improvement process aims to improve the quality of the data acquired in the ingestion phase,
making appropriate changes to the data and storing it in a new HBase table. The structure of the Job
Main_QI is shown in Figure 9.

Figure 9: Main_QI.kjb pipeline

The QI.ktr transformation is in charge of add fundamental properties to the data. A SPARQL query extracts
information such as: coordinates (latitude and longitude), streets, house numbers, cities, zip codes, but
above all the toponym. See Figure 10.

Figure 10: QI.ktr pipeline

The data is read from the Electric_vehicle_charging_ST table and is completed with the missing
information. Through the Select Value step, the data set is cleaned that is the fields that are relevant to the
system are selected. So, the data is ready to be saved on a new HBase table (ex:
Electric_vehicle_charging_ST_QI, always with family equal to 'Family1').

10

4.1.3 Triplification
The Triplification task aims to generate a file.n3 containing a set of RDF triples starting from the data
acquired and processed in the two previous phases. Each piece of information collected is linked to KM4City
ontology (http://www.disit.org/km4city/schema), using the Karma tool.
Karma provides:

• The creation of a model that maps data on one or more ontologies (in our case in the KM4City multi-
ontology). The mapping is done by linking the fields of ontologies with the data contained in MySQL
table (therefore to generate the Karma model it is necessary to copy data from HBase to MySQL).

• The application of the model to the data through the tool Kitchen.

• The architecture (pipeline) of this ETL process is shown in Figure 11.

Figure 11: Main_Triplification.kjb pipeline.

The ‘Set variable’ step creates the MODELPATH variable that keeps the path to the model (the file
containing the Karma model). The model must be saved in a folder called Model inside the Triplification
folder. See Figure 12.

Figure 12: Set variable

In the following steps, the information contained in the HBase table Electric_vehicle_charging_ST_QI is
temporarily copied to another MySQL table Electric_vehicle_charging_kmz_ST. This operation is necessary
because it was decided to use the Karma tool to realize the rdfs triples, and Karma works only with SQL.
The ‘Create a folder’ step creates the folder that will contain the file containing the triples. It is necessary to
follow the nomenclature guidelines :

• the folder containing the file.n3 must have the same name as the process. This folder must be

http://www.disit.org/km4city/schema

11

maintained in a group of nested directory where the root folder is called as the process category
('Category' of the MySQL table 'process_manager2'). The other folders must keep track of the date on
which the triples were generated (i.e. Category/year/month/day/hour/second/processName).

• Example: TPL/Bus_ataflinea/2017/12/19/17/0001
The step ‘Create triples’ realizes the triples while the following steps carry out some checks and validations.

4.2 RealTime data acquisition (periodic/dynamic)

The acquisition process includes a single phase during which the data is downloaded, processed and inserted
into a HBase table. In Figure 13 it is possible to observe the internal structure of the Main.kjb file (the Min
pipeline), which must be strictly maintained.

Figure 13: Main.kjb pipeline

As for the static data, the first operation to perform is to update the MySQL table 'process _manager2' of
the Elaborato_Sis_Distr database. See Figure 14.

Figure 14: Some rows extracted from the table Elaborato_Sis_Distr.process_manager2

Also for this ETL, it is necessary to set the processName parameter within the job. Its value must be equal
to the key of the row inserted in the database, i.e Electric_vehicle_charging_kmz_RT. The next steps are
almost identical and have the same responsibilities. Figure 16 shows the structure of the job
Download.kjb.

12

Figure 15: Download.kjb pipeline
The Preprocessing step in this example is in charge of selecting the RealTime information and setting an
identifier for each row of the dataset. This identifier must be equal to the identifier used during the acquisition
of the static data. This field is fundamental because it connects the static and the RealTime data. See
Figure 16: the output is copied to the stream.

Figure 16: Preprocessing.ktr pipeline

The data is read from the stream and through the Phoenix insert step is inserted (using the upsert function)
into a HBase table. See Figure 18. This table must be created from the command line. In Figure 18 an example
can be observed.

Figura 17: phoenix.ktr pipeline

13

Figure 18: Create the HBase table via command line

	1 Introduction: ETL process (Extract, Transform, Load)
	1.1 ETL input and output

	The ETLs are mechanisms of data processing. They start from the ingestion (Extraction) and then continue with the re-elaboration of the data that includes phases of qualification and aggregation of data (Transforming) and the loading of data on the st...
	It has been decided to maintein:
	 The final data:
	o in a NoSQL store (HBase)
	o in rdf triples (to aggregate data between themselves and connect them to KM4City multi-ontology)
	 the input parameters of the ETLs in a MySQL table. For example: web server address to download the dataset, user license associated to the downloaded dataset, description of the dataset and /or data provider, directory where the rdf triples (file.n3...
	2 How to use the Virtual Machine and ETL tools
	3 Nomenclature rules
	4 Static data ingestion
	4.1 Static data acquisition
	2
	3
	4
	5
	4.1.1 Ingestion
	4.1.2 Quality Improvement
	4.1.3 Triplification
	4.2 RealTime data acquisition (periodic/dynamic)

